UAVs Applied to the Counting and Monitoring of Animals

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 291)


The advantages of intelligent approaches such as the conjunction of artificial vision and the use of Unmanned Aerial Vehicles (UAVs) have been recently emerging. This paper presents a focused on obtaining scans of large areas of livestock system. Counting and monitoring of animal species can be performed with video recordings taken from UAVs. Moreover the system keeps track of the number of animals detected by analyzing the images taken with the UAVs cameras. Several tests have been performed to evaluate this system and preliminary results and the conclusions are presented in this paper.


Unmanned Aerial Vehicle Convolutional Neural Networks livestock detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    San Miguel, A., Ochoay, J., Pérez Carral, C.: Wildlife Management in Mediterranean Forest Ecosystems. Problems and current situation of Shrublands. Montes (35), 33–36 (1994)Google Scholar
  2. 2.
    B. T. a. C. J.: Real-time Face Detection and Tracking of Animals. In: de 8th Seminar of Neural Network Applications in Electrical Engineering, Belgrade (2006)Google Scholar
  3. 3.
    Buenestado, B.V.: Aprovechamiento y gestión de la caza en España. Una reflexión a propósito de los cercados cinegéticos. Actas del VI Coloquio de Geografía Rural, 257–272 (1991)Google Scholar
  4. 4.
    Bodin, W.K., Redman, J.J., Thorson, D.C.: U.S. Patent No. 7,286,913. U.S. Patent and Trademark Office, Washington, DC (2007)Google Scholar
  5. 5.
    Bottou, L.: Stochastic learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) Machine Learning 2003. LNCS (LNAI), vol. 3176, pp. 146–168. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Buss, H., Busker, I.: Mikrokopter (2008)Google Scholar
  7. 7.
    C. S. a. R. T. J. McKinlay: Integrating Count Effort by Seasonally Correcting Animal Population. CCAMLR Science 17, 213–227 (2010)Google Scholar
  8. 8.
    Pinzón, C.I., Bajo, J., De Paz, J.F., Corchado, J.M.: S-MAS: An adaptive hierarchical distributed multi-agent architecture for blocking malicious SOAP messages within Web Services environments. Expert Systems with Applications 38(5), 5486–5499Google Scholar
  9. 9.
    Tapia, D.I., Abraham, A., Corchado, J.M., Alonso, R.S.: Agents and ambient intelligence: case studies. Journal of Ambient Intelligence and Humanized Computing 1(2), 85–93 (2010)CrossRefGoogle Scholar
  10. 10.
    Tapia, D.I., De Paz, J.F., Rodríguez, S., Bajo, J., Corchado, J.M.: Multi-agent system for security control on industrial environments. International Transactions on System Science and Applications Journal 4(3), 222–226 (2008)Google Scholar
  11. 11.
    Tapia, D.I., Alonso, R.S., De Paz, J.F., Corchado, J.M.: Introducing a distributed architecture for heterogeneous wireless sensor networks. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009, Part II. LNCS, vol. 5518, pp. 116–123. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Tapia, D.I., Rodríguez, S., Bajo, J., Corchado, J.M.: FUSION@, a SOA-based multi-agent architecture. In: International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008), pp. 99–107 (2008)Google Scholar
  13. 13.
    Fdez-Riverola, F., Corchado, J.M.: CBR based system for forecasting red tides. Knowledge-Based Systems 16(5), 321–328 (2003)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193–202 (1980), doi:10.1007/BF00344251CrossRefzbMATHGoogle Scholar
  15. 15.
    Sileshi, G.: The excess-zero problem in soil animal count data and choice of appropriate models for statistical inference. Pedobiologia 52(1), 1–17 (2008)CrossRefGoogle Scholar
  16. 16.
    Garijo, F., Gómes-Sanz, J.J., Pavón, J., Massonet, P.: Multi-agent system organization: An engineering perspective. In: Pre-Proceeding of the 10th European Workshop on Modeling Autonomous Agents in a Multi-Agent World (MAAMAW 2001) (2001)Google Scholar
  17. 17.
    Getreuer, P.: Chan-Vese Segmentation. Image Processing on Line 2012 (2012), doi:10.5201/ipol.2012.g-cvGoogle Scholar
  18. 18.
    Gómez, J., Patricio, M.A., García, J., Molina, J.M.: Communication in distributed tracking systems: an ontology-based approach to improve cooperation. Expert Systems 28(4), 288–305 (2011)CrossRefGoogle Scholar
  19. 19.
    Griol, D., García-Herrero, J., Molina, J.M.: Combining heterogeneous inputs for the development of adaptive and multimodal interaction systems. Advances in Distributed Computing and Artificial Intelligence Journal 6, 37–53 (2013) ISSN 2255-2863Google Scholar
  20. 20.
    Haehnel, H.: Remote controlled flying robot platform. In: Third International Conference on Digital Information Management, ICDIM 2008, pp. 920–921. IEEE (November 2008) Google Scholar
  21. 21.
    Bajo, J., De Paz, J.F., Rodríguez, S., González, A.: Multi-agent system to monitor oceanic environments. Integrated Computer-Aided Engineering 17(2), 131–144 (2010)Google Scholar
  22. 22.
    Bajo, J., Corchado, J.M.: Evaluation and monitoring of the air-sea interaction using a CBR-Agents approach. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 50–62. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    J. C. G. R. R. A. B. a. J. M. V. M. Ángel Farfán: Game harvest characterisation of the mammals in Andalusia. Galemys 16(1), 41–59 (2004)Google Scholar
  24. 24.
    J. D. R. a. K. R. G. Felix A. Wichmann: Animal detection in natural scenes: Critical features revisited. Journal of Vision 10(4) (April 2010)Google Scholar
  25. 25.
    Anderson, J.I.J.M.: Tropical Soil Biology and Fertility. A Handbook of Methods. de CAB International, Wallingford (1993)Google Scholar
  26. 26.
    Gallego, J.I.R.: Caza y turismo cinegético como instrumentos. Anales de Geografía de la Universidad Complutense 30(2) (Octubre 2010)Google Scholar
  27. 27.
    Fraile, J.A., Bajo, J., Corchado, J.M., Abraham, A.: Applying wearable solutions in dependent environments. IEEE Transactions on Information Technology in Biomedicine 14(6), 1459–1467 (2011)CrossRefGoogle Scholar
  28. 28.
    De Paz, J.F., Rodríguez, S., Bajo, J., Corchado, J.M.: Case-based reasoning as a decision support system for cancer diagnosis: A case study. International Journal of Hybrid Intelligent Systems 6(2), 97–110 (2009)Google Scholar
  29. 29.
    De Paz, J.F., Rodríguez, S., Bajo, J., Corchado, J.M.: Mathematical model for dynamic case-based planning. International Journal of Computer Mathematics 86(10-11), 1719–1730 (2009)CrossRefzbMATHGoogle Scholar
  30. 30.
    Corchado Rodríguez, J.M.: Redes Neuronales Artificiales: un enfoque práctico. Servicio de Publicacións da Universidade de Vigo, Vigo (2000)Google Scholar
  31. 31.
    Corchado, J.M., Lees, B.: Adaptation of cases for case based forecasting with neural network support. In: Soft Computing in Case Based Reasoning, pp. 293–319 (2001)Google Scholar
  32. 32.
    Corchado, J.M., Fyfe, C.: Unsupervised neural method for temperature forecasting. Artificial Intelligence in Engineering 13(4), 351–357 (1999)CrossRefGoogle Scholar
  33. 33.
    Corchado, J.M., Aiken, J., Rees, N.: Artificial intelligence models for oceanographic forecasting. Plymouth Marine Laboratory (2001)Google Scholar
  34. 34.
    Corchado, J.M., Aiken, J.: Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 32(4), 307–313 (2002)CrossRefGoogle Scholar
  35. 35.
    Corchado, J.M., Bajo, J., De Paz, J.F., Rodríguez, S.: An execution time neural-CBR guidance assistant. Neurocomputing 72(13), 2743–2753 (2009)CrossRefGoogle Scholar
  36. 36.
    Corchado, J.M., De Paz, J.F., Rodríguez, S., Bajo, J.: Model of experts for decision support in the diagnosis of leukemia patients. Artificial Intelligence in Medicine 46(3), 179–200 (2009)CrossRefGoogle Scholar
  37. 37.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998), doi:10.1109/5.726791CrossRefGoogle Scholar
  38. 38.
    Parihk, M., Pately, M., Bhat, D.: Animal Detection Using Template Matching Algorithm. International Journal of Research in Modern Engineering and Emerging Technology 1(3) (2013)Google Scholar
  39. 39.
    Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor (2012)Google Scholar
  40. 40.
    Borrajo, M.L., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.: Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises. International Journal of Neural Systems 21(4), 277–296 (2011)CrossRefGoogle Scholar
  41. 41.
    Ramli, H., Kuntjoro, W., Makhtar, A.K.: Advanced Autonomous Multirotor Response System. Applied Mechanics and Materials 393, 299–304 (2013)CrossRefGoogle Scholar
  42. 42.
    Rodriguez, S., Julián, V., Bajo, J., Carrascosa, C., Botti, V., Corchado, J.M.: Agent-based virtual organization architecture. Engineering Applications of Artificial Intelligence 24(5), 895–910Google Scholar
  43. 43.
    Rodríguez, S., Pérez-Lancho, B., De Paz, J.F., Bajo, J., Corchado, J.M.: Ovamah: Multiagent-based adaptive virtual organizations. In: 12th International Conference on Information Fusion, FUSION 2009, pp. 990–997 (2009)Google Scholar
  44. 44.
    Rodríguez, S., de Paz, Y., Bajo, J., Corchado, J.M.: Social-based planning model for multiagent systems. Expert Systems with Applications 38(10), 13005–13023 (2011)CrossRefGoogle Scholar
  45. 45.
    Macrofauna, S., Lavelle, P., Senapati, B., Barros, E.: Trees, Crops and Soil Fertility: Concepts and Research Methods, pp. 303–323 (2003)Google Scholar
  46. 46.
    Svanfeldt, M.: Design of the hardware platform for the flight control system in an unmanned aerial vehicle (Doctoral dissertation. Linköping) (2010)Google Scholar
  47. 47.
    Tretyakov, V., Surmann, H.: Hardware architecture of a four-rotor UAV for USAR/WSAR scenarios. In: Workshop Proceedings of SIMPAR 2008-International Conference on Simulation, Modeling and Programming for Autonomous Robots (2008)Google Scholar
  48. 48.
    Zato, C., Villarrubia, G., Sánchez, A., Bajo, J., Corchado, J.M.: PANGEA: A New Platform for Developing Virtual Organizations of Agents. International Journal of Artificial Intelligence TM 11(A13), 93–102 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Computer and Automation DepartmentUniversity of SalamancaSalamancaSpain

Personalised recommendations