Advertisement

Wireless Multisensory Interaction in an Intelligent Rehabilitation Environment

  • Miguel Oliver
  • José Pascual Molina
  • Francisco Montero
  • Pascual González
  • Antonio Fernández-Caballero
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 291)

Abstract

Today, the population is aging, and this is becoming a problem for current health systems, as each day it has to invest more money in treating the elderly. Rehabilitation of elderly patients with physical disabilities is one of these problems that everyday incur greater overhead to health care. This paper provides a gerontechnology-based solution by proposing a multisensory system for rehabilitation in an intelligent environment. The proposal enables helping needed people and thus reducing the cost of health care.

Keywords

Gerontechnology Rehabilitation Intelligent environments Multisensory interaction Wireless sensor networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Costa, A., Castillo, J.C., Novais, P., Fernández-Caballero, A., Simoes, R.: Sensor-driven agenda for intelligent home care of the elderly. Expert Systems with Applications 39(15), 12192–12204 (2012)CrossRefGoogle Scholar
  2. 2.
    Castillo, J.A., Carneiro, D., Serrano-Cuerda, J., Novais, P., Fernández-Caballero, A., Neves, J.: A multi-modal approach for activity classification and fall detection. International Journal of Systems Science 45(4), 810–824 (2014)CrossRefGoogle Scholar
  3. 3.
    Harrington, T.L., Harrington, M.K.: Gerontechnology: Why and How. Shaker Publishing BV (2000)Google Scholar
  4. 4.
    Schónauer, C., Pintaric, T., Kaufmann, H., Jansen-Kosterink, S., Vollenbroek-Hutten, M.: Chronic pain rehabilitation with a serious game using multimodal input. In: Proceedings of the 2011 International Conference on Virtual Rehabilitation, pp. 1–8 (2011)Google Scholar
  5. 5.
    Chang, Y., Chen, S., Huang, J.: A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Research in Developmental Disabilities 32(6), 2566–2570 (2011)CrossRefGoogle Scholar
  6. 6.
    Fuentes, J.A., Oliver, M., Montero, F., Fernández-Caballero, A., Fernández, M.A.: Towards usability evaluation of multimodal assistive technologies using RGB-D sensors. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part II. LNCS, vol. 7931, pp. 210–219. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Davaasambuu, E., Chiang, C., Chiang, J., Chen, Y., Bilgee, S.: A Microsoft Kinect based virtual rehabilitation system. In: Proceedings of the 5th International Conference on Frontiers of Information Technology, Applications and Tools, pp. 44–50 (2012)Google Scholar
  8. 8.
    Freitas, D., Da Gama, A., Figueiredo, L., Chaves, T., Marques-Oliveira, D., Teichrieb, V., Araújo, C.: Development and evaluation of a Kinect based motor rehabilitation game. In: Proceedings of Simposio Brasileiro de Jogos e Entretenimento Digital, pp. 144–153 (2012)Google Scholar
  9. 9.
    Chang, C., Lange, B., Zhang, M., Koenig, S., Requejo, P., Somboon, N., Sawchuk, A., Rizzo, A.: Towards pervasive physical rehabilitation using Microsoft Kinect. In: Proceedings of the 6th International Conference on Pervasive Computing Technologies for Healthcare, pp. 1–4 (2012)Google Scholar
  10. 10.
    Lange, B., Chang, C., Suma, E., Newman, B., Rizzo, A., Bolas, M.: Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor. In: Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1831–1834 (2011)Google Scholar
  11. 11.
    Pirovano, M., Mainetti, R., Baud-Bovy, G., Lanzi, P., Borghese, N.: Self-adaptive games for rehabilitation at home. In: Proceedings of the IEEE Conference on Computational Intelligence and Games, pp. 179–186 (2012)Google Scholar
  12. 12.
    Da Gama, A., Chaves, T., Figueiredo, L., Teichrieb, V.: Improving motor rehabilitation process through a natural interaction based system using Kinect sensor. In: Proceedings of the 2012 IEEE Symposium on 3D User Interfaces, pp. 145–146 (2012)Google Scholar
  13. 13.
    VirtualRehab (2013), http://virtualrehab.info
  14. 14.
  15. 15.
    Toyra (2013), http://www.toyra.org
  16. 16.
    Brontes Processing (2013), http://www.brontesprocessing.com
  17. 17.
  18. 18.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Miguel Oliver
    • 1
    • 2
  • José Pascual Molina
    • 1
    • 2
  • Francisco Montero
    • 1
    • 2
  • Pascual González
    • 1
    • 2
  • Antonio Fernández-Caballero
    • 1
    • 2
  1. 1.Instituto de Investigación en Informática de Albacete (I3A)Universidad de Castilla-La ManchaAlbaceteSpain
  2. 2.Departamento de Sistemas InformáticosUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations