Context-Aware Module for Social Computing Environments

  • Gabriel Villarrubia
  • Juan F. De Paz
  • Javier Bajo
  • Yves Demazeau
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 291)

Abstract

The continuous evolution of the information and telecommunication technologies has led to new forms of social interaction, including social networks. Social interaction is a new paradigm that studies the use of information technologies with social purposes. Social computing envisions a new kind of computation where humans and machines collaborate to compute and resolve a problem. In this paper we present a context-aware module for the PANGEA architecture that incorporates contextual information to enrich the social knowledge representation.

Keywords

Multi-agent systems Human-agent societies Context-Aware Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abras, S., Ploix, S., Pesty, S., Jacomino, M.: A multi-agent home automation system for power management. LNEE, vol. 15, pp. 59–68 (2008)Google Scholar
  2. 2.
    Artikis, A.: Dynamic Protocols for Open Agent Systems. In: Decker, S., Sierra, C. (eds.) Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems, AAMAS 2009. International Foundation for Autonomous Agents and Multiagent SystemsMay, pp. 10–15 (2009)Google Scholar
  3. 3.
    Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., Rebollo, M.: An Abstract Architecture for Virtual Organizations: The THOMAS approach. Knowledge and Information Systems 29, 379–403 (2011)CrossRefGoogle Scholar
  4. 4.
    Bajo, J., Corchado, J.M.: Evaluation and monitoring of the air-sea interaction using a CBR-Agents approach. Case-Based Reasoning Research and Development, 50–62 (2005)Google Scholar
  5. 5.
    Carneiro, D., Castillo, J., Novais, P., Fernández-Caballero, A., Neves, J.: Multimodal Behavioural Analysis for Non-invasive Stress Detection. Expert Systems With Applications 39(18), 13376–13389 (2012) ISSN: 0957-4174Google Scholar
  6. 6.
    Dimeas, A.L., Hatziargyriou, N.D.: Operation of a Multiagent System for Microgrid Control. IEEE Transactions on Power Systems 20(3), 1447–1455 (2005)CrossRefGoogle Scholar
  7. 7.
    Fraile, J.A., Bajo, J., Corchado, J.M., Abraham, A.: Applying wearable solutions in dependent environments. IEEE Transactions on Information Technology in Biomedicine 14(6), 1459–1467 (2011)CrossRefGoogle Scholar
  8. 8.
    Fuentes-Fernández, R., Gómez-Sanz, J.J., Pavón, J.: Understanding the human context in requirements elicitation. Requirements engineering 15(3), 267–283 (2010)CrossRefGoogle Scholar
  9. 9.
    Fuentes-Fernandez, R., Gomez-Sanz, J.J., Pavon, J.: Model integration in agent-oriented development. International Journal of Agent-Oriented Software Engineering 1(1), 2–27 (2007)CrossRefGoogle Scholar
  10. 10.
    Gómez-Romero, J., Serrano, M.A., Patricio, M.A., García, J., Molina, J.M.: Context-based Scene Recognition from Visual Data in Smart Homes: An Information Fusion approach. ACM/Springer Journal of Personal and Ubiquitous Computing. Special Issue on Sensor-driven Computing and Applications for Ambient Intelligence 16(7), 835–857 (2012)Google Scholar
  11. 11.
    Haibo, L., Fang, Z.: Design and implementation of wireless sensor network management systems based on WEBGIS. Journal of Theoretical and Applied Information Technology 49(2), 792–797 (2013)MATHGoogle Scholar
  12. 12.
    Karim, L., Mahmoud, Q.H., Nasser, N., Khan, N.: LRSA: A multi-component Wireless Sensor Network management framework. In: 2012 IEEE Global Communications Conference (GLOBECOM), pp. 683–688 (2012)Google Scholar
  13. 13.
    Lim, H.B., Iqbal, M., Wang, W., Yao, Y.:  The National Weather Sensor Grid: a large-scale cyber-sensor infrastructure for environmental monitoring.  IJSNet 7(1/2), 19–36 (2010)CrossRefGoogle Scholar
  14. 14.
    Liu, Y., Seet, B.C., Al-Anbuky, A.: An Ontology-Based Context Model for Wireless Sensor Network (WSN) Management in the Internet of Things. J. Sens. Actuator Netw. 2(4), 653–674 (2013)CrossRefGoogle Scholar
  15. 15.
    Pavon, J., Sansores, C., Gomez-Sanz, J.J.: Modelling and simulation of social systems with INGENIAS. International Journal of Agent-Oriented Software Engineering 2(2), 196–221 (2008)CrossRefGoogle Scholar
  16. 16.
    Perez, A.J., Labrador, M.A., Barbeau, S.J.: G-Sense: a scalable architecture for global sensing and monitoring. IEEE Network 24(4), 57–64 (2010)Google Scholar
  17. 17.
    Robertson, D., Giunchiglia, F.: Programming the social computer. Phil. Trans. R. Soc. A.  371, 20120379Google Scholar
  18. 18.
    Rodríguez, S., Pérez-Lancho, B., De Paz, J.F., Bajo, J., Corchado, J.M.: Ovamah: Multiagent-based adaptive virtual organizations. In: 12th International Conference on Information Fusion, FUSION 2009, pp. 990–997 (2009)Google Scholar
  19. 19.
    Rodríguez, S., de Paz, Y., Bajo, J., Corchado, J.: Social-based planning model for multiagent systems. Expert Systems with Applications 38(10), 13005–13023 (2011)CrossRefGoogle Scholar
  20. 20.
    Schuler, D.: Social computing. Communications of the ACM Volume 37(1), 28–29 (1994)CrossRefGoogle Scholar
  21. 21.
    Tapia, D.I., Alonso, R.S., De Paz, J.F., Corchado, J.: Introducing a distributed architecture for heterogeneous wireless sensor networks. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009, Part II. LNCS, vol. 5518, pp. 116–123. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Tapia, D.I., Abraham, A., Corchado, J.M., Alonso, R.: Agents and ambient intelligence: case studies. Journal of Ambient Intelligence and Humanized Computing 1(2), 85–93 (2010)CrossRefGoogle Scholar
  23. 23.
    Tapia, D.I., Rodríguez, S., Bajo, J., Corchado, J.M.: FUSION@, a SOA-based multi-agent architecture. In: International Symposium on Distributed Computing and Artificial Intelligence, DCAI 2008, pp. 99–107 (2008)Google Scholar
  24. 24.
    Tapia, D.I., Alonso, R.S., García, Ó., de la Prieta, F., Pérez-Lancho, B.: Cloud-IO: Cloud computing platform for the fast deployment of services over wireless sensor networks. In: Uden, L., Herrera, F., Bajo, J., Corchado, J.M. (eds.) 7th International Conference on KMO. Advances in Intelligent Systems and Computing, vol. 172, pp. 493–504. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Von Ahn, L., Dabbish, L.: Designing games with a purpose. Communications of the ACM 51(8), 58–67 (2008)Google Scholar
  26. 26.
    Wang, F.Y., Carley, K.M., Zeng, D., Mao, W.: Social Computing: From Social Informatics to Social Intelligence. IEEE Intelligent Systems 22(2), 79–83 (2007)CrossRefGoogle Scholar
  27. 27.
    Venturini, V., Carbo, J., Molina, J.M.: Methodological design and comparative evaluation of a MAS providing AmI. Expert Systems with Applications 39, 10656–10673 (2012)CrossRefGoogle Scholar
  28. 28.
    Wong, J.K.W., Li, H., Wang, S.W.: Intelligent building research: a review. Automation in Construction 14(1), 143–159 (2005)CrossRefGoogle Scholar
  29. 29.
    Zato, C., Villarrubia, G., Sánchez, A., Barri, I., Rubión, E., Fernández, A., Rebate, C., Cabo, J.A., Álamos, T., Sanz, J., Seco, J., Bajo, J.J.: MCorchado. PANGEA - Platform for Automatic coNstruction of orGanizations of intElligent Agents. In: Distributed 9th International Conference Computing and Artificial Intelligence (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gabriel Villarrubia
    • 1
  • Juan F. De Paz
    • 1
  • Javier Bajo
    • 2
  • Yves Demazeau
    • 3
  1. 1.BISITEUniversidad de SalamancaSalamancaSpain
  2. 2.DIAUniversidad Politécnica de MadridMadridSpain
  3. 3.CNRS, LIGGrenobleFrance

Personalised recommendations