Advertisement

Performance and Results of the Triple Buffering Built-In in a Raspberry PI to Optimize the Distribution of Information from a Smart Sensor

  • Jose-Luis Jimenez-Garcia
  • Jose-Luis Poza-Luján
  • Juan-Luis Posadas-Yagüe
  • David Baselga-Masia
  • José-Enrique Simó-Ten
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 290)

Abstract

Currently, 3D sensors can be considered an evolution of cameras by providing the image with its depth information. These sensors have a generic function and the programmer has to process the received information in order to be adapted and used in a specific environment. In robots navigation, the 3D information can be useful for basic behaviours such as “obstacles avoidance” or even more complex behaviours such as “maps generation”. In this article an image management system provided by the xTion intelligent sensor is presented. The xTion sensor provides a VGA image and a 3D depth, which allows it to be used for several purposes. In order to distribute the data, it is acquired, processed and sent to several clients with a triple buffer system modified to serve the most recent image to the client. The system is programmed in C for Linux and built-in in a Raspberry PI. The article exposes the performance and results from monitoring the frame’s delay comparing it with a simple and a double buffer system widely used in this kind of systems.

Keywords

intelligent sensors buffering distributing information 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brignell, J.E.: The future of intelligent sensors: a problem of technology or ethics? Sensors and Actuators 56, 11–15 (1996)CrossRefGoogle Scholar
  2. 2.
    Fernandes, J., Laranjeira, J., Novais, P., Marreiros, G., Neves, J.: A Context Aware Architecture to Support People with Partial Visual Impairments. In: Omatu, S., Neves, J., Rodriguez, J.M.C., Paz Santana, J.F., Gonzalez, S.R. (eds.) Distrib. Computing & Artificial Intelligence. AISC, vol. 217, pp. 333–340. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Chien-Hui, L., Kuan-Wei, L., Ting-Hua, C., Che-Chen, C., Charles, H.-P.: Fall Detection by a SVM-Based Cloud System with Motion Sensors. In: Yueh-Min, H., Han-Chieh, C., Der-Jiunn, D., James J (Jong Hyuk), P. (eds.) Advanced Technologies, Embedded and Multimedia for Human-centric Computing. LNEE, vol. 260, pp. 37–45. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. 4.
    Grzejszczak, T., Mikulski, M., Szkodny, T., Jędrasiak, K.: Gesture Based Robot Control. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 407–413. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Lee, C.S., Gyu, M.L., Woo, S.R.: Standardization and challenges of smart ubiquitous networks in ITU-T. IEEE Communications Magazine 51(10), 102–110 (2013)CrossRefGoogle Scholar
  6. 6.
    Dias, D.M., Mukherjee, R., Sitaram, D., Tewari, R.: Buffering and Caching in Large-Scale Video Servers. In: Prac. of COMPCON (1995)Google Scholar
  7. 7.
    Tagami, Y., Watanabe, M., Yamaguchi, Y.: Development Environment of 3D Graphics Systems. Fujitsu Scientific & Technical Journal 49(1), 64–70 (2013)Google Scholar
  8. 8.
    Khan, S., Bailey, D., Gupta, G.: Simulation of Triple Buffer Scheme. In: Second International Conference on Computer and Electrical Engineering (2009)Google Scholar
  9. 9.
    ASUS: Xtion Pro Live, http://www.asus.com
  10. 10.
    Edwards, C.: Not-so-humble raspberry pi gets big ideas. Engineering & Technology 8(3), 30–33 (2013)CrossRefGoogle Scholar
  11. 11.
    Poza-Luján, J.L., Posadas-Yagüe, J.L., Simó-Ten, J.E.: Quality of Control and Quality of Service in Mobile Robot Navigation. International Journal of Imaging and Robotics 8(1) (2014)Google Scholar
  12. 12.
    Norman Villaroman, N., Rowe, D., Swan, B.: Teaching natural user interaction using OpenNI and the Microsoft Kinect sensor. In: Proceedings of the 2011 Conference on Information Technology Education (SIGITE 2011), pp. 227–232. ACM, New York (2011)CrossRefGoogle Scholar
  13. 13.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer vision with the OpenCV library. O’reilly (2008)Google Scholar
  14. 14.
    Ollero, A.: Intelligent mobile robot navigation. STAR, vol. 16. Springer, Heidelberg (2005)MATHGoogle Scholar
  15. 15.
    Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual Robot Experimentation Platform V-REP: A Versatile 3D Robot Simulator. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS (LNAI), vol. 6472, pp. 51–62. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jose-Luis Jimenez-Garcia
    • 1
  • Jose-Luis Poza-Luján
    • 2
  • Juan-Luis Posadas-Yagüe
    • 2
  • David Baselga-Masia
    • 1
  • José-Enrique Simó-Ten
    • 2
  1. 1.School of Engineering in Computer Science (ETSINF)ValenciaSpain
  2. 2.University Institute of Control Systems and Industrial Computing (ai2)Universitat Politècnica de València (UPV)ValenciaSpain

Personalised recommendations