Advertisement

Distributed and Guided Genetic Algorithm for Humanitarian Relief Planning in Disaster Case

  • Fethi Mguis
  • Kamel Zidi
  • Khaled Ghedira
  • Pierre Borne
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 290)

Abstract

In this paper we propose a distributed and guided genetic algorithm for humanitarian relief planning in natural disaster case. It is a dynamic vehicle routing problem with time windows (DVRPTW), where customers should be served during a given time interval. This problem is an extension of classic vehicle routing problem. In the case of a disaster, emergency planning must be fast, consistent and scalable. For these reasons we opted for an improved genetic algorithm by adding some sort of guide to accelerate the convergence of the algorithm. Thus, the genetic algorithm can provide a population of solutions that can address the dynamic aspect of the problem. The objective of our approach is to provide a plan to meet all the demands with minimizing the total distance travelled. The proposed approach has been tested with theoretical data and showed high efficiency, which infers the possibility of applying for the management of emergency calls in the event of major disaster.

Keywords

Disaster planning Disaster logistics Vehicle routing problem with time windows Dynamic VRP Disaster relief Discrete optimization Multi-agents solving problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BBS]
    Balcik, B., Beamon, B., Smilowitz, K.: Last mile distribution in humanitarian relief. Journal of Intelligent Transportation Systems 12(2), 51–63 (2008)CrossRefGoogle Scholar
  2. [BH]
    Bent, R., Hentenryck, P.: Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Operations Research 52(6), 977–987 (2004a)CrossRefMATHGoogle Scholar
  3. [CS]
    Campbell, A., Savelsbergh, M.: A decomposition approach for the inventory-routing problem. Transportation Science 38, 488–502 (2004)CrossRefGoogle Scholar
  4. [FGS]
    Fleischmann, B., Gnutzmann, S., Sandvob, E.: Dynamic vehicle routing based on online traffic information. Transportation Science 38(4), 420–433 (2004)CrossRefGoogle Scholar
  5. [Go]
    Goldberg, D.: Genetic algorithms in search, optimization, and machine learning. Advison-Wesley (1989)Google Scholar
  6. [Ho]
    Hong, L.: An improved lns algorithm for real-time vehicle routing problem with time windows. Computers and Operations Research (2011)Google Scholar
  7. [MD]
    Malandraki, C., Daskin, M.: Time dependent vehicle routing problems: formulations, properties and heuristic algorithms. Transportation Science 26(3), 185–200 (1992)CrossRefMATHGoogle Scholar
  8. [MZ]
    Mete, H., Zabinsky, Z.: Stochastic optimization of medical supply location and distribution in disaster management. International Journal of Production Economics 126(1), 76–84 (2010)CrossRefGoogle Scholar
  9. [MZGB2]
    Mguis, F., Zidi, K., Ghedira, K., Borne, P.: Distributed approach for vehicle routing problem in disaster case. In: 13th IFAC Symposium on Control in Transportation Systems, Sofia-Bulgaria (2012a)Google Scholar
  10. [MZGB1]
    Mguis, F., Zidi, K., Ghedira, K., Borne, P.: Modélisation d’un système multi-agent pour la résolution d’un problme de tournées de véhicules dans une situation d’urgence. In: 9ème Conférence Internationale de Modélisation, Optimisation et SIMulation, MOSIM 2012, Bordeaux, France (2012b)Google Scholar
  11. [NS]
    Nagy, G., Salhi, S.: Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries. European Journal of Operational Research 162, 126–141 (2005)CrossRefMATHGoogle Scholar
  12. [OEK]
    Ozdamar, L., Ekinci, E., Kucukyazici, B.: Emergency logistics planning in natural disasters. Annals of Operations Research 129, 217–245 (2004)CrossRefMathSciNetGoogle Scholar
  13. [So]
    Solomon, M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35(2), 254–265 (1987)CrossRefMATHMathSciNetGoogle Scholar
  14. [ZZ]
    Zeddini, B., Zargayouna, M.: Auto-organisation spatio-temporelle pour le vrptw dynamique. RJCIA (2009)Google Scholar
  15. [Zi]
    Zidi, K.: Systme Interactif d’Aide au Dplacement Multimodal. PhD thesis, Ecole centrale de Lille France (2006)Google Scholar
  16. [ZMGB]
    Zidi, K., Mguis, F., Ghedira, K., Borne, P.: Distributed genetic algorithm for disaster relief planning. Int. J. Comput. Commun. 8(5), 769–783 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fethi Mguis
    • 1
  • Kamel Zidi
    • 2
  • Khaled Ghedira
    • 3
  • Pierre Borne
    • 4
  1. 1.Faculty of Sciences of GabesTunisTunisia
  2. 2.Faculty of Sciences of GafsaGafsaTunisia
  3. 3.Higher Institute of Management of TunisTunisTunisia
  4. 4.Ecole Centrale de LilleVilleneuve-d’AscqFrance

Personalised recommendations