Advertisement

Platform Image Processing Applied to the Study of Retinal Vessels

  • Pablo Chamoso
  • Luis García-Ortiz
  • José I. Recio-Rodríguez
  • Manuel A. Gómez-Marcos
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 294)

Abstract

Recent studies have found retinal vessel caliber to be related to the risk of hypertension, left ventricular hypertrophy, metabolic syndrome, stroke and others coronary artery diseases. The vascular system in the human retina is easily perceived in its natural living state by the use of a retinal camera. Nowadays, there is general experimental agreement on the analysis of the patterns of the retinal blood vessels in the normal human retina. The development of automated tools designed to improve performance and decrease interobserver variability, therefore, appears necessary. This paper presents a study focused on developing a technological platform specialized in assessing retinal vessel caliber and describing the relationship of the results obtained to cardiovascular risk.

Keywords

arteriolar-venular ratio arterial stiffness cardiovascular disease AI algorithms pattern recognition image analysis expert knowledge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akita, K., Kuga, H.: A computer method of understanding ocular fundus images. Pattern Recogn. 16, 431–443 (1982)CrossRefGoogle Scholar
  2. 2.
    Bayesian, Y.Y.: Machine, clustering and number of clusters. Pattern Recognition Letters 18(11-13), 1167–1178 (1997)CrossRefGoogle Scholar
  3. 3.
    Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Automatic detection of the optic nerve in retinal images. In: Proceedings of the IEEE International Conference on Image Processing, Singapore, vol. 1, pp. 1–5 (1989a)Google Scholar
  4. 4.
    Chen, B., Tosha, C., Gorin, M.B., Nusinowitz, S.: Analysis of Autofluorescent retinal images and measurement of atrophic lesion growth in Stargardt disease. Experimental Eye Research 91(2), 143–152 (2010)CrossRefGoogle Scholar
  5. 5.
    Corchado, J.M., De Paz, J.F., Rodríguez, S., Bajo, J.: Model of experts for decision support in the diagnosis of leukemia patients. Artificial Intelligence in Medicine 46(3), 179–200 (2009)CrossRefGoogle Scholar
  6. 6.
    Cvijović, Z., Radenković, G., Maksimović, V., Dimčić, B.: Application of ANOVA method to precipitation behaviour studies. Materials Science and Engineering A 397(1-2), 195–203 (2005)CrossRefGoogle Scholar
  7. 7.
    De Paz, J.F., Rodríguez, S., Bajo, J., Corchado, J.M.: CBR System for Diagnosis of Patient. In: Proceedings of HIS 2008, pp. 807–812. IEEE Computer Society Press (2009) ISBN: 978-0-7695-3326-1Google Scholar
  8. 8.
    De Paz, J.F., Rodríguez, S., Bajo, J., Corchado, J.: Case-based reasoning as a decision support system for cancer diagnosis: A case study. International Journal of Hybrid Intelligent Systems 6(2), 97–110 (2009)Google Scholar
  9. 9.
    Fdez-Riverola, F., Corchado, J.M.: CBR based system for forecasting red tides. Knowledge-Based Systems 16(5), 321–328 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    García-Ortiz, L., Recio-Rodríguez, J.I., Parra-Sanchez, J., González Elena, L.J., Patino-Alonso, M.C., Agudo-Conde, C., Rodríguez-Sánchez, E., Gómez-Marcos, M.A.: A new tool to assess retinal vessel caliber. Reliability and validity of measures and their relationship with cardiovascular risk 30 (April 2012), http://www.jhypertension.com
  11. 11.
    Goldbaum, M., Katz, N., Nelson, M., Haff, L.: The discrimination of similarly colored objects in computer images of the ocular fundus. Invest. Ophthalmol. Vis. Sci. 31, 617–623 (1990)Google Scholar
  12. 12.
    Heneghan, C., Flynn, J., O’Keefe, M., Cahill, M.: Characterization of changes in blood vessel and tortuosity in retinopathy of prematurity using image analysis. Med. Image A. 6, 407–429 (2002)CrossRefGoogle Scholar
  13. 13.
    Hoover, A., Kouznetsoza, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imag. 19, 203–210 (2000)CrossRefGoogle Scholar
  14. 14.
    Hunter, A., Lowell, J., Steel, D., Basu, A., Ryder, R.: Non-linear filtering for vascular segmentation and detection of venous beading. University of Durham (2002)Google Scholar
  15. 15.
    Roger, J., Arnold, J., Blauth, C., Smith, P.L.C., Taylor, K.M., Wootton, R.: Measurement of capillary dropout in retinal angiograms by computerised image analysis. Pattern Recognition Letters 13(2), 143–151 (1992)CrossRefGoogle Scholar
  16. 16.
    Kalviainen, H., Hirvonen, P., Xu, L., Oja, E.: Probabilistic and non-probabilistic Hough transforms. Image Vision Comput. 13, 239–252 (1995)CrossRefGoogle Scholar
  17. 17.
    Kenney, J.F., Keeping, E.S.: Mathematics of Statistics, Pt. 2, 2nd edn. Van Nostrand, Princeton (1951)Google Scholar
  18. 18.
    Lee, S., Wang, Y., Lee, E.: A computer algorithm for automated detection and quantification of microaneurysms and haemorrhages in color retinal images. In: SPIE Conference on Image Perception and Performance, vol. 3663, pp. 61–71 (1999)Google Scholar
  19. 19.
    Li, H., Chutatape, O.: Automated feature extraction in color retinal images by a model based approach. IEEE Trans. Biomed. Eng. 51, 246–254 (2004)CrossRefGoogle Scholar
  20. 20.
    Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Kennedy, L.: Measurement of retinal vessel widths from fundus images based on 2-D modeling. IEEE Trans. Biomed. Eng. 23, 1196–1204 (2004)Google Scholar
  21. 21.
    Patton, N., Aslam, T.M., MacGillivray, T., Deary, I.J., Dhillon, B., Eikelboom, R.H., Yogesan, K., Constable, I.J.: Retinal image analysis: Concepts, applications and potential. Progress in Retinal and Eye Research 25(1), 99–127 (2006)CrossRefGoogle Scholar
  22. 22.
    Quinlan, J.R.: C4.5: Programs For Machine Learning. Morgan Kaufmann Publishers Inc. (1993)Google Scholar
  23. 23.
    Rodríguez, S., De Paz, J.F., Bajo, J., Corchado, J.M.: Applying CBR Sytems to Micro-Array Data Classification. In: Corchado, J.M., De Paz, J.F., Rocha, M.P., Riverola, F.F. (eds.) Proceedings of IWPACBB 2008. ASC, vol. 49, pp. 102–111. Springer, Heidelberg (2010)Google Scholar
  24. 24.
    Ruxton, G.D., Beauchamp, G.: Some suggestions about appropriate use of the Kruskal–Wallis test. Animal Behaviour 76(3), 1083–1087 (2008)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Sánchez, C., Hornero, R., López, M.I., Aboy, M., Poza, J., Abásolo, D.: A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis. Medical Engineering & Physics 30(3), 350–357 (2008)CrossRefGoogle Scholar
  26. 26.
    Sánchez-Pi, N., Fuentes, V., Carbó, J., Molina, J.M.: Knowledge-based system to define context in commercial applications. In: 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007) and 3rd ACIS International Workshop on Self-Assembling Wireless Networks (SAWN 2007), Qingdao, Tsingtao, China, Julio 27-29, pp. 694–699 (2007)Google Scholar
  27. 27.
    Serrano, E., Gómez-Sanz, J.J., Botía, J.A., Pavón, J.: Intelligent data analysis applied to debug complex software systems. Neurocomputing 72(13), 2785–2795 (2009)CrossRefGoogle Scholar
  28. 28.
    Tamura, S., Okamoto, Y., Yanashima, K.: Zero-crossing interval correction in tracing eye-fundus blood vessels. Pattern Recogn. 21, 227–233 (1988)CrossRefGoogle Scholar
  29. 29.
    Tanabe, Y., Kawasaki, R., Wang, J.J., Wong, T.Y., Mitchell, P., Daimon, M., et al.: Retinal arteriolar narrowing predicts 5-year risk of hypertension in Japanese people: the Funagata study. Microcirculation 17, 94–102 (2010)CrossRefGoogle Scholar
  30. 30.
    Verde, G., García-Ortiz, L., Rodríguez, S., Recio-Rodríguez, J.I., De Paz, J.F., Gómez-Marcos, M.A., Merchán, M.A., Corchado, J.M.: Altair: Automatic Image Analyzer to Assess Retinal Vessel Caliber. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 429–438. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. 31.
    Wong, T.Y., Duncan, B.B., Golden, S.H., Klein, R., Couper, D.J., Klein, B.E., et al.: Associations between the metabolic syndrome and retinal microvascular signs: the Atherosclerosis Risk In Communities study. Invest Ophthalmol. Vis. Sci. 45, 2949–2954 (2004)CrossRefGoogle Scholar
  32. 32.
    Yang, X., Huang, Y., Crowson, M., Li, J., Maitland, M.L., Lussier, Y.A.: Kinase inhibition-related adverse events predicted from in vitro kinome and clinical trial data. Journal of Biomedical Informatics 43(3), 376–384 (2010)CrossRefGoogle Scholar
  33. 33.
    Yatsuya, H., Folsom, A.R., Wong, T.Y., Klein, R., Klein, B.E., Sharrett, A.: Retinal microvascular abnormalities and risk of lacunar stroke: Atherosclerosis Risk in Communities Study. Stroke 41, 1349–1355 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pablo Chamoso
    • 1
  • Luis García-Ortiz
    • 2
  • José I. Recio-Rodríguez
    • 2
  • Manuel A. Gómez-Marcos
    • 2
  1. 1.Computers and Automation DepartmentUniversity of SalamancaSalamancaSpain
  2. 2.Primary care Research unit La Alamedilla, Sacyl, IBSALSalamancaSpain

Personalised recommendations