NAPROC-13: A Carbon NMR Web Database for the Structural Elucidation of Natural Products and Food Phytochemicals

  • José Luis López-Pérez
  • Roberto Theron
  • Esther del Olmo
  • Beatriz Santos-Buitrago
  • José Francisco Adserias
  • Carlos Estévez
  • Carlos García Cuadrado
  • David Eguiluz López
  • Gustavo Santos-García
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 294)


This paper describes the characteristics and functionalities of the web-based database NAPROC-13 ( ). It contains Carbon NMR spectral data from more than 21.000 Natural Products and related derivates. A considerable number of structures included in the database have been revised and corrected from the original publications considering subsequent published revisions. It provides tools that facilitate the structural identification of natural compounds even before their purification. This database allows for flexible searches by chemical structure, substructure of structures as well as spectral features, chemical shifts and multiplicities. Searches for names, formulas, molecular weights, family, type and group of compound according to the IUPAC classification are also implemented. It supports a wide range of searches, from simple text matching to complex boolean queries. These capabilities are used together with visual interactive tools, which enable the structural elucidation of known and unknown compounds by comparison of their 13C NMR data.


structural elucidation carbon NMR spectral database natural compounds chemoinformatics bioinformatics food phytochemicals SMILES code 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bohlmann, F., Zdero, C., Jakupovic, J., Grenz, M., et al.: Further Pyrrolizidine alkaloids and furoeremophilanes from Senecio species. Phytochemistry 25, 1151–1159 (1986)CrossRefGoogle Scholar
  2. 2.
    Breitmaier, E., Woelter, W.: Carbon-13 NMR spectroscopy. High-resolution methods and applications in Organic Chemistry. VCH Publ., Weinheim (1987)Google Scholar
  3. 3.
    Chen, J., Swamidass, S.J., Dou, Y., et al.: Chemdb: a public database of small molecules and related chemoinformatics resources. Bioinformatics 21, 4122–4139 (2005)Google Scholar
  4. 4.
    Clarkson, C., Stærk, D., Hansen, S.H., Smith, P.J., Jaroszewski, J.W.: Discovering new natural products directly from crude extracts by HPLC-SPE-NMR: chinane diterpenes in Harpagophytum procumbens. J. Nat. Prod. 69, 527–530 (2006)CrossRefGoogle Scholar
  5. 5.
    Cui, Q., Lewis, I.A., Hegeman, A.D., Anderson, M.E., et al.: Metabolite identification via the Madison Metabolomics Consortium Database. Nat. Biotechnol. 26, 162–164 (2008)CrossRefGoogle Scholar
  6. 6.
    Ertl, P., Jacob, O.: WWW-based chemical information system. J. Mol. Struct. Theochem. 419, 113–120 (1997)CrossRefGoogle Scholar
  7. 7.
    Gasteiger, J.: Chemoinformatics: a new field with a long tradition. Anal. Bioanal. Chem. 384, 57–64 (2006)CrossRefGoogle Scholar
  8. 8.
    Grabley, S., Thiericke, R.: Bioactive agents from natural sources: trends in discovery and application. Adv. Biochem. Eng. Biotechnol. 64, 101–154 (1999)Google Scholar
  9. 9.
    Halabalaki, M., Vougogiannopoulou, K., Mikros, E., Skaltsounis, A.L.: Recent advances and new strategies in the NMR-based identification of natural products. Curr. Opin. Biotechnol. 25, 1–7 (2014)CrossRefGoogle Scholar
  10. 10.
    Harvey, A.: Strategies for discovering drugs from previously unexplored natural products. Drug. Discov. Today 5, 294–300 (2000)CrossRefGoogle Scholar
  11. 11.
    Inselberg, A.: The plane with parallel coordinates. The Visual Computer 1, 69–91 (1985)CrossRefMATHGoogle Scholar
  12. 12.
    Kochev, N., Monev, V., Bangov, I.: Searching chemical structures. In: Chemoinformatics: a Textbook, pp. 291–318. Wiley-VCH (2003)Google Scholar
  13. 13.
    Lei, J., Zhou, J.: J. Chem. Inf. Comput. Sci. 42, 742–748 (2002)Google Scholar
  14. 14.
    López-Pérez, J.L., Theron, R., del Olmo, E., Díez, D., Vaquero, M., Adserias, J.F.: Application of chemoinformatics to the structural elucidation of natural compounds. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1150–1157. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    López-Pérez, J.L., Theron, R., Olmo, E., del Díaz, D.: NAPROC-13: a database for the dereplication of natural product mixtures in bioassay-guided protocols. Bioinformatics 23, 3256–3257 (2007)CrossRefGoogle Scholar
  16. 16.
    Peláez, R., Theron, R., García, C.A., López-Pérez, J.L., et al.: Design of new chemoinformatic tools for the analysis of virtual screening studies: Application to tubulin inhibitors. In: Corchado, J.M., De Paz, J.F., Rocha, M.P., Riverola, F.F. (eds.) IWPACBB 2008. ASC, vol. 49, pp. 189–196. Springer, Heidelberg (2008)Google Scholar
  17. 17.
    Robien, W.: NMR data correlation with chemical structure. In: von Ragu Schleyer, P., Allinger, N.L., Clark, T., Gasteiger, J., Kollman, P.A., Schaefer, H.F. (eds.) Encyclopedia of Computational Chemistry, vol. 3, pp. 1845–1857. Wiley, New York (1998)Google Scholar
  18. 18.
    Scalbert, A., Andres-Lacueva, C., Arita, M., Kroon, P., et al.: Databases on food phytochemicals and their health-promoting effects. J. Agric. Food Chem. 59, 4331 (2011)CrossRefGoogle Scholar
  19. 19.
    Shoichet, B.K.: Virtual screening of chemical libraries. Nature 432, 862–865 (2004)CrossRefGoogle Scholar
  20. 20.
    Steinbeck, C., Kuhn, S.: NMRShiftDB compound identification and structure elucidation support through a free community-built web database. Phytochemistry 65, 2711–2717 (2004)CrossRefGoogle Scholar
  21. 21.
    Theron, R., Olmo, E., del, D.D., Vaquero, M., Adserias, J.F., López-Pérez, J.L.: NATPRO-C13: an interactive tool for the structural elucidation of natural compounds. In: Corchado, E., Corchado, J.M., Abraham, A. (eds.) Innovations Hybrid Intelligent Systems. ASC, vol. 44, pp. 401–410. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Ulrich, E.L., Akutsu, H., Doreleijers, J.F., Harano, Y., Ioannidis, Y.E., Lin, J., et al.: BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2008)Google Scholar
  23. 23.
    Urones, J.G., Barcala, P.B., Marcos, I.S., Moro, R.F., Esteban, M.L., et al.: Pyrrolizidine alkaloids from Senecio gallicus and S. adonidifolius. Phytochemistry 27, 1507–1510 (1988)CrossRefGoogle Scholar
  24. 24.
    Weininger, D.: Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988)CrossRefGoogle Scholar
  25. 25.
    Wishart, D.S., Jewison, T., Guo, A.C., Wilson, M., Knox, C., et al.: HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 41(D1), D801–D807 (2013)Google Scholar
  26. 26.
    Witte, L., Ernst, L., Wray, V., Hartmann, T.: Revised structure of the main alkaloid of Senecio adonidifolius. Phytochemistry 31, 1027–1028 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • José Luis López-Pérez
    • 1
  • Roberto Theron
    • 2
  • Esther del Olmo
    • 1
  • Beatriz Santos-Buitrago
    • 3
  • José Francisco Adserias
    • 4
  • Carlos Estévez
    • 4
  • Carlos García Cuadrado
    • 4
  • David Eguiluz López
    • 4
  • Gustavo Santos-García
    • 5
  1. 1.Departamento de Química Farmacéutica – IBSAL – CIETUSUniversidad de SalamancaSalamancaSpain
  2. 2.Dpto. Informática y AutomáticaUniversidad de SalamancaSalamancaSpain
  3. 3.School of ComputingUniversity of the West of ScotlandPaisleyUK
  4. 4.Fundación General Universidad de SalamancaSalamancaSpain
  5. 5.Computing CenterUniversidad de SalamancaSalamancaSpain

Personalised recommendations