Skip to main content

Non-wood Renewable Materials: Properties Improvement and Its Application

  • Chapter
  • First Online:
Biomass and Bioenergy

Abstract

Plant biomass are woody and non-wood materials (e.g., oil palm, bamboo, rattan, bagasse, and kenaf) and are abundant and renewable resource. Unfortunately, the heavy reliance on this resource is a threat to forest ecosystems and a recipe for accelerated land resource degradation. Due to the increasing scarcity of wood resources, many rural communities have shifted to utilization of crop residues for many different applications. The non-wood biomass is readily available, environmental friendly, and technologically suitable, and therefore, an excellent raw material for the future. The non-wood materials like bamboo, rattan, oil palm, and bagasse have superior properties and durability, which can be further prolonged by the modification treatment. The modification treatments increase the performance of the non-wood and could make it suitable for applications in many fields ranging from construction industry to automotive industry. This chapter deals with the properties improvement techniques of the selected non-wood biomasses and evaluates its applications for various purposes. The new developments dealing with the improvement of non-wood properties have also been presented in the chapter. The performance of non-wood biomass materials has been compared to the wood-based materials. Recent studies pertaining to the above topics have also been cited. Finally, the advanced applications of the improved non-wood biomasses have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul Khalil HPS, Suraya NL (2011) Anhydride modification of cultivated kenaf bast fibers: morphological, spectroscopic and thermal studies. BioResources 6(2):1122–1135

    CAS  Google Scholar 

  • Abdul Khalil HPS, Ismail H, Rozman HD, Ahmad MN (2001) The effect of acetylation on interfacial shear strength between plant fibers and various matrices. Eur Polym J 37:1037–1045

    Article  Google Scholar 

  • Abdul Khalil HPS, Alwani MS, Mohd Omar AK (2006) Chemical composition, anatomy, lignin distribution and cell wall structure of Malaysian plant waste fibers. BioResources 2:220–232

    Google Scholar 

  • Abdul Khalil HPS, Alwani MS, Ridzuan R, Kamarudin H, Khairul A (2008a) Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibers. Polym Plast Technol Eng 47(3):273–280

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Noorshashillawati Azura M, Issam AM, Said MR, Mohd Adawi TO (2008b) Oil palm empty fruit bunches (OPEFB) reinforced in new unsaturated polymer composites. J Reinf Plast Compos 27:1817–1826

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Bhat AH, Jawaid M, Amouzgar P, Ridzuan R, Said MR (2010a) Agro-wastes: mechanical and physical properties of resin impregnated oil palm trunk core lumber. Polym Compos 31(4):638–644

    CAS  Google Scholar 

  • Abdul Khalil HPS, Nurul Fazita MR, Bhat AH, Jawaid M, Nik Fuad NA (2010b) Development and material properties of new hybrid plywood from oil palm biomass. Mater Des 31:417–424

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Ireana Yusra AF, Bhat AH, Jawaid M (2010c) Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Ind Crops Prod 31:113–121

    Article  CAS  Google Scholar 

  • Abdul Khalil HPS, Jawaid M, Hassan A, Paridah MT, Zaidon A (2012) Oil palm biomass fibres and recent advancement in oil palm biomass fibres based hybrid biocomposites. Compos Appl 8:187–220

    Google Scholar 

  • Abdul Khalil HPS, Jawaid M, Akil HM, Firoozian P, Hassan A (2013) Preparation of activated carbon filled epoxy nanocomposites: morphological and thermal properties. J Therm Anal Calorim 113(2):623–631. doi:10.1007/s10973-012-2743-2

    Article  CAS  Google Scholar 

  • Acharya SK, Mishra P, Mehar SK (2011) Effect of surface treatment on the mechanical properties of bagasse fiber reinforced polymer composite. BioResources 6(3):3155–3165

    CAS  Google Scholar 

  • Akinyele JO, Olutoge FA (2011) Properties of rattan cane reinforced concrete façade subjected to axial loading. J Civil Eng Architect 5(11):1048–1055

    Google Scholar 

  • Alves JO, Tenório JOS, Zhuo C, Levendis YA (2012) Characterization of nanomaterials produced from sugarcane bagasse. J Mater Res Technol 1:31–34

    Article  CAS  Google Scholar 

  • Amouzgar P, Abdul Khalil HPS, Salamatinia B, Abdullah AZ, Issam AM (2010) Optimazation of bioresource material from oil palm trunk core drying using microwave radiation: a respone surface methodology application. Bioresour Technol 101:8396–8401

    Article  CAS  PubMed  Google Scholar 

  • Anagnost SE, Mark RE, Hanna RB (2002) Variation of microfibril angle within individual fibers. Wood Fiber Sci 34(2):337–349

    CAS  Google Scholar 

  • Araujo PCD, Arruda LM, Menezzi CHSD, Teixeira DE, Souza MR (2011) Lignocellulosic composites from Brazilian giant bamboo (Guadua Magna). Part 2: properties of cement and gypsum bonded particle boards. Maderas Cien Technol 13(3):297–306

    Article  Google Scholar 

  • Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P, White R (2011) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fiber Polym 12(7):919–926

    Article  CAS  Google Scholar 

  • Bachtiar D, Sapuan SM, Zainudin ES, Khalina A, Dahlan KZHM (2011) The effect of alkaline treatment and compatibilising agent on tensile strength properties of short sugar palm fiber reinforced high impact polystyrene composites. BioResources 6:4815–4823

    CAS  Google Scholar 

  • Balakrishna NS, Ismail H, Othman N (2012) The effects of rattan filler loading on properties of rattan powder-filler polypropylene composites. BioResources 7(4):56775690

    Google Scholar 

  • Begum K, Islam MA (2013) Natural fiber as a substitute to synthetic fiber in polymer composites: a review. Res J Eng Sci 2(3):46–53

    Google Scholar 

  • Bhat KM, Liese W, Schmitt U, Hamburg FRG (1990) Structural variability of vascular bundles and cell wall in rattan stem. Wood Sci Technol 24:211–224

    Article  Google Scholar 

  • Bhat IUH, Abdul Khalil HPS, Ismail H, Alshammdi T (2011) Morphological, spectroscopic and thermal properties of alkali-treated and chemically modified oil palm empty fruit bunch fibers and oil palm frond fibers: a comparative study. BioResources 6(4):4673–4685

    CAS  Google Scholar 

  • Deniz I, Ates S (2002) Determination of optimum kraft pulping conditioning using bamboo (Pyllotochys bambusoides). In: 2nd National black sea forestry congress proceeding, Artvin, pp 1072–1084

    Google Scholar 

  • Dwianto W, Morooka T, Norimoto M (1998) A method of measuring viscoelastic properties of wood under high-temperature and high-pressure steam condition. Mokuzai Gakkaishi 44(2):77–81

    CAS  Google Scholar 

  • Edeerozey AMM, Akil HM, Azhar AB, Zainal Ariffin MI (2007) Chemical modification of kenaf fibers. Mater Lett 61:2023–2025

    Article  CAS  Google Scholar 

  • Gassan J, Chate A, Bledzki AK (2001) Calculation of elastic properties of natural fibers. J Mater Sci 36(15):3715–3720

    Article  CAS  Google Scholar 

  • Hambali E, Thahar E, Komarudin A (2010) The potential of oil palm and rice biomass as bioenergy feedstock. In: I7th Biomass Asia Workshop, Jakarta

    Google Scholar 

  • Hartono H (2012) Quality enhancement of the inner part of oil palm trunk by close system compression method and by phenol formaldehyde compregnation. Ph.D. Thesis, Institut Pertanian Bogor, 66p

    Google Scholar 

  • Hashim R, Wan Nadhari WNA, Sulaiman O, Hiziroglu S, Sato M, Kawamura F, Seng TG, Tomoko (2011) Evaluations of some properties of exterior particleboard made from oil palm biomass. Compos Mater 45(16):1659–1665

    Article  CAS  Google Scholar 

  • Hemmasi AH, Khademi-Eslam H, Pourabbasi S, Ghasemi I, Talaiepour M (2011) Cell morphology and physico-mechanical properties of HDPE/EVA/Rice hull hybrid foamed composites. BioResources 6(3):2291–2308

    CAS  Google Scholar 

  • Ibrahim Z, Astimar AA, Ridzuan R, Anis M, Lee S (2013) Effect of refining parameters on medium density fibreboard (MDF) properties from oil palm trunk (Elaeis guineensis). Open J Compos Mater 3:127–131

    Google Scholar 

  • Ishak MR, Leman Z, Sapuan SM, Edeerozey MMA, Othman S (2009) Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites. 9th National Symposium on Polymeric Materials (NSPM 2009). Mater Sci Eng 11(2010):012006

    Google Scholar 

  • Ishak MR, Leman Z, Sapuan SM, Edeerozey AMM, Othman IS (2010) Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites. Mater Sci Eng 11:012006

    Google Scholar 

  • Jeyanthi S, Rani JJ (2012) Improving mechanical properties by kenaf natural long fiber reinforced composite for automotive structures. J Appl Sci Eng 15(3):275–280

    Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    Article  CAS  Google Scholar 

  • Kalaprasad G, Francis B, Radhesh C, Pavithran C, Groeninckx G, Thomas S (2004) Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites. Polym Int 53(11):1624–1638

    Article  CAS  Google Scholar 

  • Law KN, Wan Rosli WD, Arniza G (2007) Morphological and chemical nature of fiber strands of oil palm empty-fruit-bunch (OPEFB). BioResources 2(3):351–360

    CAS  Google Scholar 

  • Lee S (2010) An overview of advanced composite material and their industrial applications. www.industryhk.org/english/news/news_fed/…/presentation_acm.pdf. Accessed 27 Jan 2014

  • Leonard YM, Nick T, Andrew JC (2007) Mechanical properties of hemp fibre reinforced euphorbia composites. Macromol Mater Eng 292(9):993–1000

    Article  Google Scholar 

  • Li XB, Shape TF, Peter GF, Hse CY, Eberhardt TL (2007) Chemical changes with maturation of the bamboo species Phyllostachys pubescens. J Trop For Sci 19(1):6–12

    Google Scholar 

  • Liese W (2004) Preservation of a bamboo culm in relation to its structure. Simposio Internacional Guadua, Pereira-Colombia

    Google Scholar 

  • Lobovikov M, Paudel S, Piazza M, Ren H, Wu J (2007) World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Madsen B, Gamstedt EK (2013) Wood versus plant fibers: similarities and differences in composite applications. Adv Mater Sci Eng 2013:1–14

    Article  Google Scholar 

  • Madsen B, Hoffmeyer P, Thomsen AB, Lilholt H (2007) Hemp yarn reinforced composites—I. Yarn characteristics. Compos Appl Sci Manuf 38(10):2194–2203

    Article  Google Scholar 

  • Mahdavi M, Clouston PL, Arwade SR (2012) A low-technology approach toward fabrication of laminated bamboo lumber. Construct Build Mater 29:257–262

    Article  Google Scholar 

  • Manalo RD, Garcia CM (2012) Termite resistance of thermally-modified Dendrocalamus asper (Schultes f.) Backer ex Heyne. Insects 3:390–395

    Article  Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277(1):1–24

    Article  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT, Selke SE, Harte BR, Hinrichsen G (2005) Natural fibers, biopolymers and biocomposites: An introduction. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymer and biocomposites. CRC, London

    Chapter  Google Scholar 

  • Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites: a review. J Thermoplast Compos Mater 22:135–162

    Article  CAS  Google Scholar 

  • Muniandy K, Ismail H, Othman N (2012) Biodegradation, morphology, and FTIR study of rattan powder-filled natural rubber composites as a function of filler loading and a silane coupling agent. BioResources 7(1):957–971

    CAS  Google Scholar 

  • Mussig J (2010) Industrial applications of natural fibres—structure, properties and technical applications. Wiley, Chichester

    Book  Google Scholar 

  • Mustafa Al Bakri AM, Liyana J, Norazian MN, Kamarudin H, Ruzaidi CM (2013) Mechanical properties of polymer composites with sugarcane bagasse filler. Adv Mater Res 740:739–744

    Article  Google Scholar 

  • Ndazi B, Tesha JV, Bisanda ETN (2006) Some opportunities and challenges of producing bio-composites from non-wood residues. J Mater Sci 41:6984–6990

    Article  CAS  Google Scholar 

  • Okubo K, Fujii T, Yamamoto Y (2004) Development of bamboo-based polymer composites and their mechanical properties. Compos Appl Sci Manuf 35:377–383

    Article  Google Scholar 

  • Phukringsri A, Hongsriphan N (2013) Physical and mechanical properties of foamed HDPE-based synthetic rattan. In: 18th International conference on composite materials, Jeju Island

    Google Scholar 

  • Rahman M, Khan MA (2007) Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers physico-mechanical properties. Comp Sci Technol 67:2369–2376

    Article  CAS  Google Scholar 

  • Razak W, Hashim S, Mahmud S, Janshah M (2004) Strength and durability of bamboo treated through an oil-curing process. J Biol Sci 4(5):658–663

    Article  Google Scholar 

  • Rowell RM (2006) Advances in chemical modification of wood. In: Pre-symposium workshop, in conjunction with 8th Pacific Rim bio-based composites symposium, Kuala Lumpur

    Google Scholar 

  • Rowell RM, Stout HP (2007) Chapter 7 Jute and kenaf. In: Lewin M (ed) Handbook of fiber chemistry. CRC, London

    Google Scholar 

  • Rowell RM, Han JS, Rowell JS (2000) Characterization and factors affecting fiber properties. Natural polymer and agrofibers composites. In: Frollini E, Leao AL, Mattoso LHC (eds) Natural polymers and agrofibers composites. UPS/UNESP and Embrapa, Sao Carlos, Brasil, ISBN 85-86463-06-X, pp 115–134

    Google Scholar 

  • Salmen L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review. COST Action E35 2004–2008: wood machining—micromechanics and fracture. Holzforschung 63(2):121–129

    Article  CAS  Google Scholar 

  • Sanchez C, Julian B, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  CAS  Google Scholar 

  • Shah DU, Schubel PJ, Clifford MJ, Licence P (2013) Fatigue life evaluation of aligned plant fibre composites through SN curves and constant-life diagrams. Compos Sci Technol 74:139–149

    Article  CAS  Google Scholar 

  • Shibata S (2012) Effects of forming processing condition on the flexural properties of bagasse and bamboo plastic composite. BioResources 7(4):5381–5390

    Google Scholar 

  • Shin FG, Yipp MW (1989) Analysis of the mechanical properties and microstructure of bamboo–epoxy composites. J Mater Sci 24:3483–3490

    Article  CAS  Google Scholar 

  • Sreekala MS, Kumaran MG, Joseph S, Jacob M (2000) Oil palm fibers reinforced phenol formaldehyde composites: influence of fibers surface modifications on the mechanical performance. Appl Compos Mater 7(5–6):295–329

    Article  CAS  Google Scholar 

  • Sreekala MS, Kumaran MG, Geethakumariamma ML, Thomas S (2004) Environmental effects in oil palm fiber reinforced phenol formaldehyde composites: studies on thermal, biological, moisture and high energy radiation effects. Adv Compos Mater 13(34):171–197

    Article  CAS  Google Scholar 

  • Suhaily SS, Abdul Khalil HPS, Wan Nadirah WO, Jawaid M (2013) Bamboo based biocomposites material, design and applications (Chapter 9). In: Mohanty AK, Misra M, Drzal LT (eds) Materials science—advanced topics. CRC, London

    Google Scholar 

  • Sumathi S, Chai SP, Mohamed AR (2008) Utilization of oil palm as a source of renewable energy in Malaysia. Renew Sustain Energy Rev 12(9):2404–2421

    Article  CAS  Google Scholar 

  • Summerscales J, Nilmini PJD, Amandeep SV, Hall W (2010) A review of bast fibres and their composites. Part 1: fibres as reinforcements. Compos Appl Sci Manuf 41:1329–1335

    Article  Google Scholar 

  • Tamizi MM (2010) Fundamental and characteristic study of cultivated Malaysia bamboo-Selective genus Gigantochloa. PhD. Thesis, Universiti Sains Malaysia, 211p

    Google Scholar 

  • Torgovnikov GI, Vinden P (2005) New equipment for microwave wood modification. In: Proceedings 10th International conference on microwave and high frequency heating, Modena, Italy, pp 293–297

    Google Scholar 

  • Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos Appl Sci Manuf 36(8):1110–1118

    Article  Google Scholar 

  • Vandamme EJ (2009) Agro-industrial residue utilization for industrial biotechnology products (Chapter 1). In: Pandey A, Singh-Nee Nigam P (eds) Book of biotechnology for agro-industrial residues utilisation. Springer, New York, pp 3–11

    Chapter  Google Scholar 

  • Verma D, Gope PC, Maheshwari MK, Sharma RK (2012) Bagasse fiber composites: a review. J Material Environ Sci 3(6):1079–1092

    Google Scholar 

  • Virk A, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28(7):864–871

    Article  CAS  Google Scholar 

  • Wang B, Panigrahi S, Tabil L, Crerar W (2007) Pre-treatment of flax fibres for use in rotationally molded biocomposites. Reinf Plast Compos 26(5):447–463

    Article  CAS  Google Scholar 

  • Wang YP, Wang G, Cheng HT (2010) Structures of bamboo fiber for textiles. Textile Res J 84(4):334–343

    Article  Google Scholar 

  • Wanrosli WD, Law KN (2011) Oil palm fibers as paper making material: potentials and challenges. BioResources 6(1):901–917

    Google Scholar 

  • Widyorini R, Xu J, Watanabe T, Kawai S (2005) Self-bonding characteristics of binderless kenaf core composites. Wood Sci Technol 39:651–662

    Article  CAS  Google Scholar 

  • Xue L, Lope GT, Satyanarayan P (2007) Chemical treatment of natural fibre for use in natural fibre-reinforced composites: a review. Polym Environ 15(1):25–33

    Article  Google Scholar 

  • Yuliansyah AT, Hirajima T, Rochmadi (2009) Development of the Indonesian palm oil industry and utilization of solid waste. J Mining Mater Process Inst Jpn 125(12):583–589

    CAS  Google Scholar 

  • Zaini LH, Jonoobi M, Paridah MT, Karimi S (2013) Isolation and characterization of cellulose whiskers from Kenaf (Hibiscus cannabinus L.) bast fibers. J Biomater Nanobiotechnol 4:37–44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. S. Abdul Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dungani, R. et al. (2014). Non-wood Renewable Materials: Properties Improvement and Its Application. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07578-5_1

Download citation

Publish with us

Policies and ethics