Skip to main content

Unlocking the Destructive Powers of Wood-Eating Termites: From Pest to Biopolymer Derivatives Extractor

  • Chapter
  • First Online:
Biomass and Bioenergy

Abstract

Termites are social insects that live in colonies and its incredible digestive system may provide a breakthrough in efficient biopolymer derivatives production. Termite has the ability to digest a kind of food that few other living organisms are able to; the woody material. It has mouthparts that chew up wood into pieces. But the secret is that it carries special microorganisms that can digest the lignocellulosic material. By being the host to these special microorganisms, termites are able to do something that most living organisms are unable to; the ability to digest lignocellulosic materials. Termites have been considered nothing more than nuisance pest which destroy woody materials. The termite is found chewing on frames, furniture, and flooring made out of wood. But new research shows how the termite digest lignocellulose could hold a key to the production of numerous biopolymer derivatives from lignocellulosic material. Annoying as they may be, termites are amazingly efficient at converting wood into sugars, and that ability is very useful for making numerous biochemicals and biofuels. Researchers are studying the termite’s digestion process in order to synthetically copy the process so that lignocellulosic materials can be used as the source to derive numerous biochemicals. For decades, much effort was made to increase the utility of lignocellulosic materials. In consideration of the ever-growing demand for traditional usage such as fiber products, novel markets for lignocellulosic materials have been identified in recent years, in replacement of petrochemicals. The scientists believe that information learned from the termite could increase the efficiency of wood derivation, making these biopolymer derivatives even more cost-effective and utilizing lignocellulosic biomass as a sustainable source of chemicals and fuels by replacing fossil fuel. This chapter comprises information on recent conversion methods of biochemicals from lignocellulosic biomass for application enablement and commercialization, laying special emphasis on termite lignocellulolytic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agirrezabal-Telleria I, Gandarias I, Arias PL (2013) Production of furfural from pentosan-rich biomass: analysis of process parameters during simultaneous furfural stripping. Bioresour Technol 143:258–264

    Article  CAS  PubMed  Google Scholar 

  • Arora DS, Sharma RK (2010) Ligninolytic fungal laccases and their biotechnological applications. Appl Biochem Biotechnol 160:1760–1788

    Article  CAS  Google Scholar 

  • Azuma J, Nishimoto K, Koshijima T (1984) Studies on system of termites. II. Properties of carbohydrolases of termite Coptotermus formosanus Shiraki. Wood Res 70:1–16

    CAS  Google Scholar 

  • Brune A (2007) Microbiology: woodworker’s digest. Nature 450:487–488

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Sun JZ, Rodriguez JM, Lee KC (2010) Hydrogen emission by three wood-feeding subterranean termite species (Isoptera: Rhinotermitidae): production and characteristics. Insect Sci 17:237–244

    Article  CAS  Google Scholar 

  • Chin KL, H’ng PS, Wong LJ, Tey BT, Paridah MT (2010) Optimization study of ethanolic fermentation from oil palm trunk, rubberwood and mixed hardwood hydrolysates using Saccharomyces cerevisiae. Bioresour Technol 101(9):3287–3291

    Article  CAS  PubMed  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Eriksson KE, Pettersson B, Volc J, Musilek V (1986) Formation and partial charectarization of glucose 2 oxidase, A H2O2 producing enzyme in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 23:257–262

    CAS  Google Scholar 

  • Fengel D, Wegener G (1983) Wood chemistry, ultrastructure and reactions. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  CAS  PubMed  Google Scholar 

  • Gold MH, Youngs HL, Sollewijn Gelpke MD (2000) Manganese peroxidase. In: Sigel H, Sigel A (eds) Metalions biological systems. Marcel Dekker, New York, pp 559–587

    Google Scholar 

  • Hermans EH (1949) Physics and chemistry of cellulose fibres. Elsevier Publishing Company, Inc, New York, p 543

    Google Scholar 

  • Hongoh Y (2011) Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68:1311–1325

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Murashima K, Azuma JI, Sugimoto A, Slaytor M (1997) Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J Insect Physiol 43(3):235–242

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Moriya S, Ohkuma M, Kudo T (2005) Molecular cloning and characterization of a cellulose gene from a symbiotic protist of the lower termite, Coptotermes formosanus. Gene 349:67–75

    Article  CAS  PubMed  Google Scholar 

  • Jarvis MV (1984) Structure and properties of pectin gels in plant cell walls. Plant Cell Environ 7:164

    Google Scholar 

  • Kamm B, Kamm M (2004) Biorefinery systems. Chem Biochem Eng 18:1–6

    CAS  Google Scholar 

  • Ke J, Sun JZ, Nguyen HD, Singh D, Lee KC, Beyenal H, Chen SL (2010) In-situ oxygen profiling and lignin modification in guts of wood-feeding termites. Insect Sci 17:277–290

    Article  CAS  Google Scholar 

  • Kersten PJ (1990) Glyoxal oxidase of Phanerochaete Chrysosporium: its characterization and activation by ligning peroxidase. Proc Natl Acad Sci U S A 87:2936–2940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kersten PJ, Krik TK (1987) Involvement of a new enzyme. Glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bactriol 169:2195–2201

    CAS  Google Scholar 

  • Kirk K, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white rot fungi. In: Young RA, Akhtar M (eds) Environmental friendly technologies for pulp and paper industry. Wiley, New York, pp 273–307

    Google Scholar 

  • Köhler T, Dietrich C, Scheffrahn RH, Brune A (2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–4701

    Google Scholar 

  • Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689

    Article  CAS  PubMed  Google Scholar 

  • Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426

    Article  CAS  PubMed  Google Scholar 

  • Martin M, Ignacio E (2011) Grossmann energy optimization of hydrogen production from lignocellulosic biomass. Energ Syst Eng 35(9):1798–1806

    CAS  Google Scholar 

  • Nakashima K, Watanabe H, Azuma J (2002) Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus. Cell Mol Life Sci 59:1554–1560

    Article  CAS  PubMed  Google Scholar 

  • Neureiter M, Danner H, Madzingaidzo L, Miyafuji H, Thomasser C, Bvochora J, Bamusi S, Braun R (2004) Lignocellulose feedstocks for the production of lactic acid. Chem Biochem Eng Q 18(1):55–63

    CAS  Google Scholar 

  • Nishida A, Eriksson KE (1987) Formation, purification and partial charectarization of methanol oxidase, a H2O2 producing enzyme in Phanerochaete chrysosporium. Biotechnol Appl Biochem 9:325–338

    CAS  Google Scholar 

  • Ohkuma M (2003) Termite symbiotic systems: efficient bio-recycling of lignocellulose. Appl Microbiol Biotechnol 61:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma M, Sato T, Noda S, Ui S, Kudo T, Hongoh Y (2007) The candidate phylum “Termite Group 1” of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Mbiol Ecol 63(3):467–476

    Google Scholar 

  • Ohtoko K, Ohkuma M, Moriya S, Inoue T, Usami R, Kudo T (2000) Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus. Extremophiles 4:343–349

    Article  CAS  PubMed  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81(3):459–464

    Article  CAS  PubMed  Google Scholar 

  • Osbrink WLA, Lax A (2003) Effect of imidacloprid tree treatments on the occurrence of formosan subterranean termites, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J Econ Entomol 96:117–125

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Perez J, Munoz-Dorado J, de la Rubia T, Martınez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  CAS  PubMed  Google Scholar 

  • Prins RA, Kreulen DA (1991) Comparative aspects of plant cell wall digestion in mammals. In: Hoshino S, Onodera R, Minoto H, Itabashi H (eds) The rumen ecosystem. Japan Scientific Society Press, Tokyo, pp 109–120

    Google Scholar 

  • Puhan S, Vedaraman N, Rambrahaman BV, Nagarajan G (2005) Mahua (Madhuca indica) seed oil: a source of renewable energy in India. J Sci Ind Res 64:890–896

    CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    Article  CAS  PubMed  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  PubMed  Google Scholar 

  • Sarikaya A, Ladisch M (1997) Mechanism and potential application of bioligninolytic systems in a CELSS. Appl Biochem Biotechnol 62(2):131–149

    Article  CAS  PubMed  Google Scholar 

  • Scharf ME, Tartar A (2008) Review: termite digestomes as sources for novel lignocellulases. Biofpr J 2:540–552

    CAS  Google Scholar 

  • Scharf ME, Kovaleva ES, Jadhao S, Campbell JH, Buchman GW (2010) Functional and translational analyses of a beta-glucosidase gene (glycosyl hydrolase family 1) isolated from the gut of the lower termite Reticulitermes flavipes. Insect Biochem Mol Biol 40:611–620

    Article  CAS  PubMed  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  PubMed  Google Scholar 

  • Sjostrom E (1993) Wood chemistry: fundamentals and applications. Academic, Espoo, Finland, pp 51–108

    Book  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology and application. Crit Rev Biotechnol 22:33–46

    Article  CAS  PubMed  Google Scholar 

  • Sun JZ, Scharf ME (2010) Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Sci 17(3):163–165

    Article  Google Scholar 

  • Swati G, Haldar S, Ganguly A, Chatterjee PK (2013) Review on Parthenium hysterphorus as a potential energy source. Renew Sustain Energy Rev 20:420–429

    Article  CAS  Google Scholar 

  • Taherzadeh MJ (1999) Ethanol from lignocellulose: physiological effects of inhibitors and fermentation strategies, chemical reaction engineering. Chalmers University of Technology, Sweden

    Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Tokuda G, Lo N, Watanabe H, Arakawa G, Matsumoto T, Noda H (2004) Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228

    Article  CAS  PubMed  Google Scholar 

  • Van-Dyne DL, Blase MG, Clements LD (1999) A Strategy for returning agriculture and rural America to long-term full employment using biomass refineries. In: Janeck J, Alexandria VA (eds) Perspectives on New crops and new uses. ASHS Press, United States, pp 114–123

    Google Scholar 

  • Wang G, Wang DI (1984) Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl Environ Microbiol 47:294–298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang D, Li QA, Yang MH, Zhang YJ, Su ZG, Xing JM (2011) Efficient production of succinic acid from corn stalk hydrolysates by a recombinant Escherichia coli with ptsG mutation. Process Biochem 46:365–371

    Article  CAS  Google Scholar 

  • Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT (2007) Metagenomic and functional analysis of hindgut microbiota of a wood feeding higher termite. Nature 450:560–565

    Article  CAS  PubMed  Google Scholar 

  • Wood TG, Johnson RA (1986) The biology, physiology, and ecology of termites. In: Vinson SB, Johnson RA (eds) Economic impact and control of social insects. Praeger, New York, pp 1–68

    Google Scholar 

  • Yamaoka I (1979) Selective ingestion of food by the termite protozoa, Trichonympha agilis. Dobutsugaku Zasshi 88(2):174–179

    Google Scholar 

  • Zhan X, Wang D, Tuinstra MR, Bean S, Seib PA, Sun XS (2003) Ethanol and lactic acid production as affected by sorghum genotype and location. Ind Crop Prod 18:245–255

    Article  CAS  Google Scholar 

  • Zhang D, Lax AR, Bland JM, Yu J, Fedorova N, Nierman WC (2010) Hydrolysis of filter-paper cellulose to glucose by two recombinant endogenous glycosyl hydrolases of Coptotermes formosanus. Insect Sci 17:245–252

    Article  CAS  Google Scholar 

  • Zhou X, Wheeler MM, Oi FM, Scharf ME (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Molecularmol 38:805–815

    Article  CAS  Google Scholar 

  • Zhou X, Kovaleva ES, Wu-Scharf D, Campbell JH, Buchman GW (2010) Production and characterization of a recombinant beta-1,4-endoglucanase (glycohydrolase family 9) from the termite Reticulitermes flavipes. Arch Insect Biochem Physiol 74:147–162

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paik-San H’ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chin, KL., H’ng, PS., Paridah, M.T. (2014). Unlocking the Destructive Powers of Wood-Eating Termites: From Pest to Biopolymer Derivatives Extractor. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07578-5_15

Download citation

Publish with us

Policies and ethics