Skip to main content

Nanofibrillated Cellulose: Sustainable Nanofiller with Broad Potentials Use

  • Chapter
  • First Online:
Biomass and Bioenergy

Abstract

This chapter reviews some of the recent advances in the realm of the extraction of nanofibrillated cellulose from lignocellulosic fibers and some aspects of their potential uses in different fields of applications. The production of nanosized fibrils from cellulose fibers undoubtedly represents one of the most breakthroughs in cellulose-based materials during the two last decades and one of the most studied topics in the literature today. This is due to the attributes of nanocellulosics which include renewability, broad availability, and low cost of the raw material. Other features concerned its large surface-to-volume ratio, high strength and stiffness, low thermal expansion coefficient, low density, biodegradability, and high aspect ratio. Fields of use of nanocellulose include reinforcement of nanocomposite materials, thickening agents, tissue engineering scaffolds, dry-strength additive for paper, filtration media, adsorbents, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aase B, Sebastian C, Mats B, Paul G (2000) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408

    Google Scholar 

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    CAS  Google Scholar 

  • Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017–1023

    CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007a) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 9(3):1022–1026

    Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007b) Obtaining cellulose nanofibers with a uniform width of 15nm from wood. Biomacromolecules 8(10):3276–3278

    CAS  PubMed  Google Scholar 

  • Abe K, Nakatsubo F, Yano H (2009) High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Compos Sci Technol 69(14):2434–2437

    CAS  Google Scholar 

  • Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9(4):1273–1282

    CAS  PubMed  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    CAS  PubMed  Google Scholar 

  • Alila S, Besbes I, Rei Vilar M, Mutje P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (NFC): a comparative study. Ind Crop Prod 41:250–259

    CAS  Google Scholar 

  • Andresen M, Johansson L, Tanem B, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    CAS  Google Scholar 

  • Aulin C, Gällstedt M, Lindström T (2010a) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574

    CAS  Google Scholar 

  • Aulin C, Netrval J, Wågberg L, Lindström T (2010b) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6(14):3298–3305

    CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    Google Scholar 

  • Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472

    CAS  PubMed  Google Scholar 

  • Belgacem MN, Gandini A (2008) In monomers polymers and composites from renewable. Resources. ISBN:978-0-08-045316-3

    Google Scholar 

  • Belhalfaoui B, Aziz A, Elandaloussi EH, Oualia MS, De Menorval LC (2009) Succinate-bonded cellulose: a regenerable and powerful sorbent for cadmium removal from spiked high-hardness groundwater. J Hazard Mater 169:831–837

    CAS  PubMed  Google Scholar 

  • Ben Mabrouk A, Kaddami H, Boufi S, Erchiqui F, Dufresne A (2012) Cellulosic nanoparticles from alfa fibers (Stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites. Cellulose 19(3):843–853

    CAS  Google Scholar 

  • Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46(4):609–620

    CAS  Google Scholar 

  • Besbes I, Rei Vilar M, Boufi S (2011a) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206

    CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011b) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    CAS  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber reinforced composites. J Reinforc Plast Compos 24:1259–1268

    CAS  Google Scholar 

  • Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377

    CAS  Google Scholar 

  • Borges AC, Eyholzer C, Duc F, Bourban P, Tingaut P, Zimmermann T, Pioletti DP, Månson JE (2011) Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater 7:3412–3421

    CAS  PubMed  Google Scholar 

  • Bragd PL, Van Bekkum H, Besemer AC (2004) A simplified mechanism for the catalytic cycle in TEMPO-mediated oxidation of alcohol substrates under weakly alkaline conditions. Top Catal 27:49

    CAS  Google Scholar 

  • Cao XD, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals. Biomacromolecules 8:899–904

    CAS  PubMed  Google Scholar 

  • Carrero-Sanchez JC, Elias AL, Mancilla R, Arrellin G, Terrones H, Laclette JP, Terrones M (2006) Nano Lett 6:1609

    CAS  PubMed  Google Scholar 

  • Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. Forest Prod J 44:43–48

    Google Scholar 

  • Chaker A, Alila S, Mutjé P, Vilar MR, Boufi S (2013) Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose 20:2863–2875

    CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Yunfei H (2011a) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011b) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442

    CAS  Google Scholar 

  • Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115(5):2756–2762

    CAS  Google Scholar 

  • Cherian BM, Pothan LA, Chung TN, Mennig G, Kottaisamy M, Thomas S (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibres and characterization. J Agric Food Chem 56:5617–5627

    CAS  PubMed  Google Scholar 

  • Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725

    CAS  Google Scholar 

  • Cherian BM, Leao AL, Ferreira de Souza S, Costa LMM, Molina de Olyveira G, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798

    CAS  Google Scholar 

  • Clark JA (1954) Properties and treatment of pulp for paper. In: Ott E, Spurlin EM, Grafflin MW (eds) Cellulose and cellulose Derivatives. Interscience, New York, pp 621–671

    Google Scholar 

  • Cristobal C, Encarnacion R, Mercedes B, Paloma M, Jose MN, Eulogio C (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87:692–700

    Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RMJR (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12

    CAS  PubMed  Google Scholar 

  • Deep B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997

    Google Scholar 

  • Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460

    CAS  Google Scholar 

  • Dong XM, Revol JF, Gray D (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    CAS  Google Scholar 

  • Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato … of starch ± cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) Preparation and enzymatic hydrolysis of nanoparticles made from single xyloglucan polysaccharide chain. Biomacromolecules 9:57–65

    CAS  PubMed  Google Scholar 

  • Eriksen O, Syverud K, Gregersen O (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23(3):299–304

    CAS  Google Scholar 

  • Eyholzer C, Borges de Couraca A, Duc F, Bourban PE, Tingaut P, Zimmermann T, Manson JAE, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12:1419–1427

    CAS  PubMed  Google Scholar 

  • Favier V, Chanzy H, Cavaille JY (1995a) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    CAS  Google Scholar 

  • Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995b) Nanocomposites materials from latex and cellulose whiskers. Polym Adv Technol 6:351

    CAS  Google Scholar 

  • Flint EB, Suslick KS (1991) The temperature of cavitation. Science 253:1397–1399

    CAS  PubMed  Google Scholar 

  • Foster JE, Clift JD, Martin RRB, Weder C (2011) Toxicology of cellulose nanowhiskers based nanocomposites. Presented at the 2011 TAPPI international conference on nanotechnology for renewable materials, Washington, USA

    Google Scholar 

  • Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165

    CAS  PubMed  Google Scholar 

  • Gonzalez I, Boufi S, Pèlach MA, Alcalà M, Vilaseca F, Mutjè P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. Bioresources 7:5167–5180

    CAS  Google Scholar 

  • González I, Vilaseca F, Alcalá M, Pèlach MA, Boufi S, Mutjé P (2013) Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose 20:1425–1435

    Google Scholar 

  • Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980

    CAS  PubMed  Google Scholar 

  • Habibi Y, Vignon MR (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185

    CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    CAS  PubMed  Google Scholar 

  • Halpin JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:352

    Google Scholar 

  • Hamad WY (1997) Some microrheological aspects of wood-pulp fibres subjected to fatigue loading. Cellulose 4(1):51–56

    CAS  Google Scholar 

  • Hassan ML, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46:193–205

    CAS  Google Scholar 

  • Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose I crystalline domains. Carbohydr Polym 61(2):191–197

    CAS  Google Scholar 

  • Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611

    CAS  Google Scholar 

  • Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824

    CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (NFC) nanofibers. Eur Polym J 43:3434–3441

    CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2009) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585

    Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology, and accessibility. In: Sarko A (ed) Proceedings of the ninth cellulose conference, applied polymer symposia, vol 37. Wiley, New York, NY, p 797–813. ISBN 0-471-88132-5

    Google Scholar 

  • Hii C, Gregersen OW, Chinga-Carrasco G, Eriksen O (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nord Pulp Pap Res J 27:388–396

    CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucian LA, Sain M (2008) Cellulosic nanocomposites, a review. Bioresource 3(3):929–980

    Google Scholar 

  • Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978

    CAS  PubMed  Google Scholar 

  • Il Park J, Saffari A, Kumar S, Gunther A, Kumacheva E, Clarke DR, Ruhle M, Zok F (2010) Microfluidic synthesis of polymer and inorganic particulate materials. Annu Rev Mater Res 40:415–443

    Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011a) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71

    CAS  PubMed  Google Scholar 

  • Isogai T, Saito T, Isogai A (2011b) Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose 18(2):421–431

    CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater Sci Process 81:1109–1112

    CAS  Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026

    CAS  PubMed  Google Scholar 

  • Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of woodcellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95(8):1394–1398

    CAS  Google Scholar 

  • Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils—an enzymathic approach. Bioresources 1:176–188

    Google Scholar 

  • Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238

    CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    CAS  Google Scholar 

  • Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425

    CAS  Google Scholar 

  • Lin C, Wang H, Yang W (2010) Variable percolation threshold of composites with fibre fillers under compression. J Appl Phys 108:013505–013509

    Google Scholar 

  • Maatar W, Alila S, Boufi S (2013) Cellulose based organogel as an adsorbent for dissolved organic compounds. Ind Crop Prod 49:33–42

    CAS  Google Scholar 

  • Madsen B (2004) Properties of plant fibre yarn polymer composites an experimental study. Technical university of Danemark; Report Byg dtu R-082

    Google Scholar 

  • Marques G, Rencoret J, del Gutiérrez A, Río JC (2010) Evaluation of the chemical composition of different non-woody plant fibres used for pulp and paper manufacturing. Open Agric J 4:93–101

    CAS  Google Scholar 

  • Mathew AP, Oksman K, Pierron D, Harmand MF (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298

    CAS  Google Scholar 

  • Mishra SP, Manent AS, Chabot B, Daneault C (2012) Production of nanocellulose from native cellulose-various options utilizing ultrasound. Bioresources 7:422–436

    CAS  Google Scholar 

  • Molin U, Teder A (2002) Importance of cellulose/hemicellulose-ratio for pulp strength. Pulp Pap Res J Nord 17:14–28

    CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    CAS  PubMed  Google Scholar 

  • Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 471:3–19

    Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nanoorder-unit web-like network structure. Appl Phys A Mater Sci Process 80:155–159

    CAS  Google Scholar 

  • Nan CW (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37:1–116

    CAS  Google Scholar 

  • Ni H, Zeng S, Wu J, Cheng X, Luo T, Wang W, Zeng W, Chen Y (2012) Cellulose nanowhiskers: preparation, characterization and cytotoxicity evaluation. Biomed Mater Eng 22:121–127

    PubMed  Google Scholar 

  • Ouali N, Cavaillé JY, Pérez J (1991) Elastic, viscoelastic and plastic behavior of multiphase polymer blends. Plast Rubber Comp Process Appl 16:55–60

    CAS  Google Scholar 

  • Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M (2007) Enzymatic hydrolysis combined with mechanical shearing and high pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    CAS  PubMed  Google Scholar 

  • Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499

    Google Scholar 

  • Ranby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158164

    Google Scholar 

  • Retegi A et al (2010) Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose 17:661–669

    CAS  Google Scholar 

  • Rodionova G, Saito T, Lenes M, Eriksen Ø, Gregersen Ø, Fukuzumi H et al (2011) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and eucalyptus pulps. Cellulose 19(3):705–711

    Google Scholar 

  • Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270

    Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    CAS  PubMed  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    CAS  PubMed  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    CAS  PubMed  Google Scholar 

  • Sang Y, Li F, Gu Q, Liang C, Chen J (2008) Heavy metal-contaminated ground water treatment by novel nanofiber membrane. Desalination 223:349–360

    CAS  Google Scholar 

  • Satish V, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Curr Sci 102:10–25

    Google Scholar 

  • Save SS, Pandit AB, Joshi JB (1994) Microbial cell disruption—role of cavitation. Chem Eng J 55:B67–B72

    Google Scholar 

  • Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10(2):151–158

    CAS  Google Scholar 

  • Shimotoyodome A, Suzuki J, Kumamoto Y, Hase T, Isogai A (2011) Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers. Biomacromolecules 12:3812–3818

    CAS  PubMed  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Pawlak JJ, Hubbe MA (2011a) Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresources 6(4):4370–4388

    CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011b) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    CAS  Google Scholar 

  • Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulp. Ind Eng Chem Res 48:11211–11219

    CAS  Google Scholar 

  • Stephen M, Catherine N, Brenda M, Andrew K, Leslie P, Corrinec G (2011) Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. J Hazard Mater 192:922–927

    CAS  PubMed  Google Scholar 

  • Sukjoon Y, Jeffery SH (2010) Composites, enzyme-assisted preparation of fibrillated cellulose fibers and its effect on physical and mechanical properties of paper sheet composites. Ind Eng Chem Res 49:2161–2168

    Google Scholar 

  • Syverud K, St enius P (2009) Strength and barrier properties of NFC films. Cellulose 16(1):75–85

    CAS  Google Scholar 

  • Taipale T, Osterberg M, Nykanen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020

    CAS  Google Scholar 

  • The global market for nanocellulose to 2017. Futures Markets INC. 2012 Canada, pp 1–66

    Google Scholar 

  • Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88

    CAS  PubMed  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: Sarko A (ed) Proceedings of the ninth cellulose conference, applied polymer symposia, vol 37. Wiley, New York, NY, pp 815–827. ISBN 0-471-88132-5

    Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983b) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci 37:815

    CAS  Google Scholar 

  • Valo H, Kovalainen M, Laaksonen P, Hakkinen M, Auriola S, Peltonen L, Linder M, Jarvinen K, Hirvonen J, Laaksonen T (2011) Immobilization of protein coated drug nanoparticles in nanofibrillar cellulose matrices-enhanced stability and release. J Control Release 156:390–397

    CAS  PubMed  Google Scholar 

  • Vartiainen J, Pohler T, Sirola K, Pylkkanen L, Alenius H, Hokkinen J, Tapper U, Lahtinen P, Kapanen A, Putkisto K, Hiekkataipale P, Eronen P, Ruokolainen J, Laukkanen A (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 18:775–786

    CAS  Google Scholar 

  • Viviana K (2008) Improvement on cellulose accessibility and reactivity of different wood pulps. Licentiate thesis. Royal Institute of Technology

    Google Scholar 

  • Wan WK, Hutter JL, Millon LE, Guhados G (2006) Bacterial cellulose and its nanocomposites for biomedical applications. In: Oksman K, Sain M (eds) Cellulose nanocomposites. Processing characterization, and properties. American Chemical Society, Washington DC

    Google Scholar 

  • Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication. Part 1. Process optimization. J Appl Polym Sci 113(2):1270–1275

    CAS  Google Scholar 

  • Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339

    CAS  Google Scholar 

  • Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093

    CAS  Google Scholar 

  • Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Ganan P (2007) Cellulose 14:585–592

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Boufi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boufi, S. (2014). Nanofibrillated Cellulose: Sustainable Nanofiller with Broad Potentials Use. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07578-5_14

Download citation

Publish with us

Policies and ethics