Skip to main content

Chemical Functionalization of Cellulosic Fibers for Green Polymer Composites Applications

  • Chapter
  • First Online:
Biomass and Bioenergy

Abstract

During the last few decades, synthetic polymers have emerged as new potential viable alternative to traditional metallic and ceramic materials due to their inherent properties such as flexibility, light weight, corrosion resistance, and easy processing. However, these synthetic polymers also pose some serious threats to our environments due to the toxic and hazardous chemicals associated during their synthesis and afterward their end use applications. Although these synthetic polymers have benefited the human being to a great extent, recently efforts are being made to reduce their use. The prime reason for this is the increasing environmental awareness and health concerns. All these concerns have led to intensive research on natural polymer-based materials derived from different biorenewable resources. Among bio-based polymers, cellulose fibers offer a very high potential as biodegradable biorenewable material. However, the presence of hydrophilic groups on natural cellulosic fibers limits their applications in everyday use. In order to overcome the disadvantages associated with these fibers, graft copolymerization is the most trusted tool to alter their properties for targeted applications. So in the present book chapter we report some of our studies on the chemical functionalization of natural cellulosic fibers through free radical-induced graft copolymerization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amash A, Zugenmaier P (1998) Study on cellulose and xylan filled polypropylene composites. Polym Bull 40:251–258

    Article  CAS  Google Scholar 

  • Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Polymer Rev 44:231–274

    Article  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Debapriya D, Adhikari B (2004) The effect of grass fiber filler on curing characteristics and mechanical properties of natural rubber. Polym Adv Technol 15:708–715

    Article  Google Scholar 

  • Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaill J-Y, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    Article  CAS  Google Scholar 

  • Dufresne A, Kellerhals MB, Witholt B (1999) Transcrystallization in mcl-HAs/cellulose whiskers composites. Macromolecules 32:7396–7401

    Article  CAS  Google Scholar 

  • Hagstrand PO, Oksman K (2001) Mechanical properties and morphology of flax fiber reinforced melamine- formaldehyde composites. Polym Compos 22:568–578

    Article  CAS  Google Scholar 

  • Hasipoglu HN, Yilmaz E, Yilmaz O, Caner H (2005) Preparation and characterization of maleic acid grafted chitosan. Int J Polym Anal Charact 10:313–327

    Article  CAS  Google Scholar 

  • Kabir MM, Wang H, Lau KT, Cardona F, Aravinthan T (2012) Mechanical properties of chemically-treated hemp fibre reinforced sandwich composites. Compos B Eng 43:159–169

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Montford S, Small E (1999) A comparison of the biodiversity friendliness of crops with special reference to hemp (Cannabis sativa L.). J Int Hemp Assoc 6:53–63

    Google Scholar 

  • Ouajai S, Shanks RA (2009) Biocomposites of cellulose acetate butyrate with modified hemp cellulose fibres. Macromol Mater Eng 294:213–221

    Article  CAS  Google Scholar 

  • Panthapulakkal S, Zereshkian A, Sain M (2006) Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites. Bioresour Technol 97:265–272

    Article  CAS  PubMed  Google Scholar 

  • Shanks RA, Hodzic A, Ridderhof D (2006) Composites of poly (lactic acid) with flax fibers modified by interstitial polymerization. J Appl Polym Sci 99:2305–2313

    Article  CAS  Google Scholar 

  • Shibata M, Yamazoe K, Kuribayashi M, Okuyama Y (2013) All-wood biocomposites by partial dissolution of wood flour in 1-butyl-3-methylimidazolium chloride. J Appl Polym Sci 127:4802–4808

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2010) Synthesis and characterization of short grewia optiva fiber-based polymer composites. Polym Compos 31:459–470

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2012) Green polymer materials. Studium Press, Houston

    Google Scholar 

  • Thakur VK, Singha AS (2010a) KPS-initiated graft copolymerization onto modified cellulosic biofibers. Int J Polym Anal Charact 15:471–485

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS (2010b) Natural fibres-based polymers: part I-mechanical analysis of pine needles reinforced biocomposites. Bull Mater Sci 33:257–264

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS (2011) Rapid synthesis, characterization, and physicochemical analysis of biopolymer-based graft copolymers. Int J Polym Anal Charact 16:153–164

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Misra BN (2011a) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2011b) Green composites from natural cellulosic fibers. LAP Lambert Academic, Saarbrücken

    Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012a) Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. J Polym Environ 20:164–174

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012b) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012c) Surface modification of natural polymers to impart low water absorbency. Int J Polym Anal Charact 17:133–143

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012d) In-air graft copolymerization of ethyl acrylate onto natural cellulosic polymers. Int J Polym Anal Charact 17:48–60

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013a) Synthesis of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int J Biol Macromol 61:121–126

    Article  CAS  PubMed  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013b). Graft – copolymers from natural polymers using free radical0 polymerization. Int J Polym Anal Charact; 18(7). doi:10.1080/1023666X.2013.814241

  • Thakur VK, Thakur MK, Gupta RK (2013c) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828

    Article  CAS  PubMed  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013d) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25

    Article  CAS  PubMed  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013e) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51. doi:10.1016/j.ijbiomac.2013.08.026

    Article  CAS  PubMed  Google Scholar 

  • Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264

    Article  CAS  Google Scholar 

  • Wong S, Shanks RA, Hodzic A (2007) Effect of additives on the interfacial strength of poly (l-lactic acid) and poly (3-hydroxy butyric acid)-flax fibre composites. Compos Sci Technol 67:2478–2484

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors would like to thank their parental institute for providing the necessary facilities to accomplish the present research project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manju Kumari Thakur or Vijay Kumar Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thakur, M.K., Rana, A., Thakur, V.K. (2014). Chemical Functionalization of Cellulosic Fibers for Green Polymer Composites Applications. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07578-5_12

Download citation

Publish with us

Policies and ethics