Contribution of the INSIGMA Project to the Field of Intelligent Transportation Systems

  • Wojciech Chmiel
  • Jacek Dańda
  • Andrzej Dziech
  • Sebastian Ernst
  • Andrzej Głowacz
  • Piotr Kadluczka
  • Zbigniew Mikrut
  • Piotr Pawlik
  • Piotr Szwed
  • Igor Wojnicki
Part of the Communications in Computer and Information Science book series (CCIS, volume 429)

Abstract

With the growing number of vehicles traveling on public roads, traffic congestion has become a serious problem, resulting in more unpredictable travel times, increased fuel consumption and pollution. Intelligent Transportation Systems (ITS), already being developed by several countries, aim to improve safety, mobility and environmental performance. The goal of the INSIGMA project is to develop a system providing functionality of a typical ITS: real-time traffic monitoring, route planning and traffic control. In this paper we discuss the concepts and solutions developed within the project: dynamic map, sensors – videodetector and GPS tracker – as well as advanced route planning and traffic control algorithms.

Keywords

Intelligent Transportation Systems video detector GPS architecture route planning traffic control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    INSIGMA project, http://insigma.kt.agh.edu.pl (last accessed: March 2014)
  2. 2.
    Intelligent transport system, http://ec.europa.eu/transport/themes/its/index_en.htm (last accessed: March 2014)
  3. 3.
    RITA intelligent transportation systems. http://www.its.dot.gov (last accessed: March 2014)
  4. 4.
    An, S.H., Lee, B.H., Shin, D.R.: A survey of intelligent transportation systems. In: 2011 Third International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN), pp. 332–337. IEEE (2011)Google Scholar
  5. 5.
    Deloitte Research: Combating gridlock: how pricing road use can easy congestion (2003)Google Scholar
  6. 6.
    Dziech, A., Bialas, J., Glowacz, A., Leszczuk, M., Matiolanski, A., Baran, R.: Overview of recent advances in CCTV processing chain in the INDECT and INSIGMA projects. In: Proceedings of the International Conference on Availability, Reliability and Security, pp. 836–843. IEEE CPS, Regensburg (2013)Google Scholar
  7. 7.
    Dziech, A., Glowacz, A., Korus, P., Szmuc, W.: Method and system for restricting access to sensitive contents of digital images (2012), Patent App. 13/524,609Google Scholar
  8. 8.
    Fabiano, B., Curro, F., Reverberi, A.P., Pastorino, R.: Dangerous good transportation by road: from risk analysis to emergency planning. Journal of Loss Prevention in the Process Industries 18, 403–413 (2005)CrossRefGoogle Scholar
  9. 9.
    Gaborski, R.S., Paskali, J.: A cognitively motivated video detection system. Journal of Applied Science and Engineering Technology 1(1), 51–57 (2007)Google Scholar
  10. 10.
    Gleba, K., Caban, P., Wiacek, H., Kantyka, G.: The concept of gpstracker for intelligent system for global monitoring detection and identification of threats (insigma). In: Military Communications and Information Systems Conference (MCC), pp. 1–6 (October 2013)Google Scholar
  11. 11.
    Głowacz, A., Mikrut, Z., Pawlik, P.: Video detection algorithm using an optical flow calculation method. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2012. CCIS, vol. 287, pp. 118–129. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Google Official Blog: The bright side of sitting in traffic: Crowdsourcing road congestion data, http://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-traffic.html (online: last accessed: December 2013)
  13. 13.
    INRIX: Inrix home page, http://www.inrix.com/default.asp (online: last accessed: December 2013)
  14. 14.
    Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - Simulation of Urban MObility. International Journal on Advances in Systems and Measurements 5(3&4), 128–138 (2012)Google Scholar
  15. 15.
    Li, Q., Dang, H., Zhang, Y., Wu, D.: Video vehicle detection and tracking system. In: Zhou, M., Tan, H. (eds.) CSE 2011, Part II. CCIS, vol. 202, pp. 24–31. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    McQueen, B., McQueen, J.: Intelligent transportation systems architectures. Artech House Publishers, Norwood (1999)Google Scholar
  17. 17.
    Modsching, M., Kramer, R., ten Hagen, K.: Field trial on GPS accuracy in a medium size city: The influence of built-up. In: 3rd Workshop on Positioning, Navigation and Communication, pp. 209–218 (2006)Google Scholar
  18. 18.
    Mohan, P., Padmanabhan, V.N., Ramjee, R.: Nericell: rich monitoring of road and traffic conditions using mobile smartphones. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, pp. 323–336. ACM (2008)Google Scholar
  19. 19.
    Nathanail, E.G., Zaharis, S., Vagiokas, N., Prevedouros, P.D.: Risk assessment for transportation of hazardous materials through tunnels. Transportation Research Record 2162, 98–106 (2010)CrossRefGoogle Scholar
  20. 20.
    Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transportation Research Part C: Emerging Technologies 15(5), 312–328 (2007)CrossRefGoogle Scholar
  21. 21.
    Research and Innovative Technology Administration (RITA) : Intelligent transportation systems (ITS). http://www.its.dot.gov/ (online: last accessed: February 2014)
  22. 22.
    Ronchia, E., Colonnaa, P., Capoteb, J., Alvearb, D., Berlocoa, N., Cuestab, A.: The evaluation of different evacuation models for assessing road tunnel safety analysis. Tunnelling and Underground Space Technology 30, 74–84 (2012)CrossRefGoogle Scholar
  23. 23.
    Szwed, P., Kadluczka, P., Chmiel, W., Glowacz, A., Sliwa, J.: Ontology based integration and decision support in the insigma route planning subsystem. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) FedCSIS, pp. 141–148 (2012)Google Scholar
  24. 24.
    Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., Toledo, S., Eriksson, J.: Vtrack: accurate, energy-aware road traffic delay estimation using mobile phones. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, pp. 85–98. ACM (2009)Google Scholar
  25. 25.
    University of California, Berkeley: Mobile millenium project, http://traffic.berkeley.edu/ (online: last accessed: December 2013)
  26. 26.
    VanDiggelen, F.: GNSS accuracy: Lies, damn lies, and statistics. GPS World 0107, 26–32 (January 2007)Google Scholar
  27. 27.
    Wang, Y., Zou, Y., Shi, H., Zhao, H.: Video image vehicle detection system for signaled traffic intersection. In: HIS - Ninth International Conference on Hybrid Intelligent Systems, pp. 222–227. IEEE CS Press (2009)Google Scholar
  28. 28.
    Ward’s Automotive Group: Vehicles in operation by country (2010)Google Scholar
  29. 29.
    Wojnicki, I., Szwed, P., Chmiel, W., Ernst, S.: Ontology oriented storage, retrieval and interpretation for a dynamic map system. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2012. CCIS, vol. 287, pp. 380–391. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wojciech Chmiel
    • 1
  • Jacek Dańda
    • 1
  • Andrzej Dziech
    • 1
  • Sebastian Ernst
    • 1
  • Andrzej Głowacz
    • 1
  • Piotr Kadluczka
    • 1
  • Zbigniew Mikrut
    • 1
  • Piotr Pawlik
    • 1
  • Piotr Szwed
    • 1
  • Igor Wojnicki
    • 1
  1. 1.AGH University of Science and TechnologyPoland

Personalised recommendations