Challenges for Migration of Rule-Based Reasoning Engine to a Mobile Platform

  • Szymon Bobek
  • Grzegorz J. Nalepa
  • Mateusz Ślażyński
Part of the Communications in Computer and Information Science book series (CCIS, volume 429)

Abstract

Research in the area of context-awareness has recently been revolutionized by the rapid development of mobile devices like smart phones and tablets, which became omnipresent in daily human life. Such devices are valuable sources of information about their user location, physical and social activity, profiles and habits, etc. However, the information that can be obtained is not limited to the hardware sensors that the device is equipped with, but can be extended to every sensor that is available in a communication range of a device. Although the concept of multiple sensors and devices, exchanging information and working together as one big pervasive system is not new, there is still a lot of research that has to be done to allow building such systems efficiently. In this paper the prototype of a rule-based inference engine for mobile devices is described and evaluated. The most important challenges connected with migration from desktop to mobile environment were defined, and a comparison of Prolog-based platforms, as a portable environments for mobile context-aware systems were presented. We consider implementation using a portable Prolog compiler on Android platform.

Keywords

context-awareness mobile computing GIS knowledge management STM INDECT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ISO/IEC 13211: Information technology - Programming languages - Prolog, Geneva (1995)Google Scholar
  2. 2.
    Abe, S., Bandoh, T., Yamaguchi, S., Kurosawa, K., Kiriyama, K.: High performance integrated prolog processor ipp. In: Proceedings of the 14th Annual International Symposium on Computer Architecture, ISCA 1987, pp. 100–107. ACM, New York (1987), http://doi.acm.org/10.1145/30350.30362 Google Scholar
  3. 3.
    Adrian, W.T., Ciężkowski, P., Kaczor, K., Ligęza, A., Nalepa, G.J.: Web-based knowledge acquisition and management system supporting collaboration for improving safety in urban environment. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2012. CCIS, vol. 287, pp. 1–12. Springer, Heidelberg (2012), http://link.springer.com/book/10.1007/978-3-642-30721-8/page/1 CrossRefGoogle Scholar
  4. 4.
    Aït-Kaci, H.: Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, Gliwice (1999)Google Scholar
  5. 5.
    Atzmueller, M., Hilgenberg, K.: Towards capturing social interactions with sdcf: An extensible framework for mobile sensing and ubiquitous data collection. In: Proc. 4th International Workshop on Modeling Social Media. ACM Press (2013)Google Scholar
  6. 6.
    Banbara, M., Tamura, N., Inoue, K.: prolog cafe: A prolog to java translator system. In: Umeda, M., Wolf, A., Bartenstein, O., Geske, U., Seipel, D., Takata, O. (eds.) INAP 2005. LNCS (LNAI), vol. 4369, pp. 1–11. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11963578_1 CrossRefGoogle Scholar
  7. 7.
    Bardram, J.E.: The java context awareness framework (JCAF) – A service infrastructure and programming framework for context-aware applications. In: Gellersen, H.W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 98–115. Springer, Heidelberg (2005), http://dx.doi.org/10.1007/11428572_7 CrossRefGoogle Scholar
  8. 8.
    Bobek, S., Nalepa, G.J., Adrian, W.T.: Mobile context-based framework for monitoring threats in urban environment. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2013. CCIS, vol. 368, pp. 25–35. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Bobek, S., Porzycki, K., Nalepa, G.J.: Learning sensors usage patterns in mobile context-aware systems. In: Proceedings of the FedCSIS 2013 Conference, Krakow, pp. 993–998. IEEE (September 2013)Google Scholar
  10. 10.
    Bolz, C.F., Leuschel, M., Schneider, D.: Towards a Jitting VM for Prolog Execution. In: PPDP 2010 - Proceedings of the 12th International ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming. ACM, Hagenberg (2010)Google Scholar
  11. 11.
    Bruynooghe, M., Wirsing, M. (eds.): PLILP 1992. LNCS, vol. 631. Springer, Heidelberg (1992), http://dblp.uni-trier.de/db/conf/plilp/plilp92.html#Tarau92 Google Scholar
  12. 12.
    Chen, H., Finin, T.W., Joshi, A.: Semantic web in the context broker architecture. In: PerCom, pp. 277–286. IEEE Computer Society (2004)Google Scholar
  13. 13.
    Chen, H., Perich, F., Finin, T.W., Joshi, A.: Soupa: Standard ontology for ubiquitous and pervasive applications. In: 1st Annual International Conference on Mobile and Ubiquitous Systems (MobiQuitous 2004), Networking and Services, Cambridge, MA, USA, August 22-25, pp. 258–267. IEEE Computer Society (2004)Google Scholar
  14. 14.
    Chronis, I., Madan, A., Pentland, A.S.: Socialcircuits: the art of using mobile phones for modeling personal interactions. In: Proceedings of the ICMI-MLMI 2009 Workshop on Multimodal Sensor-Based Systems and Mobile Phones for Social Computing, ICMI-MLMI 2009, pp. 1:1–1:4. ACM, New York (2009)CrossRefGoogle Scholar
  15. 15.
    Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1), 4–7 (2001)CrossRefGoogle Scholar
  16. 16.
    Dey, A.K.: Modeling and intelligibility in ambient environments. J. Ambient Intell. Smart Environ. 1(1), 57–62 (2009)Google Scholar
  17. 17.
    Dey, A.K., Mankoff, J.: Designing mediation for context-aware applications. ACM Trans. Comput.-Hum. Interact. 12(1), 53–80 (2005), http://doi.acm.org/10.1145/1057237.1057241 CrossRefGoogle Scholar
  18. 18.
    Eagle, N., (Sandy) Pentland, A.: Reality mining: sensing complex social systems. Personal Ubiquitous Comput 10(4), 255–268 (2006)CrossRefGoogle Scholar
  19. 19.
    Eichberg, M.: Compiling Prolog to Idiomatic Java. In: Gallagher, J., Gelfond, M. (eds.) Technical Communications of the 27th International Conference on Logic Programming (ICLP 2011). Leibniz International Proceedings in Informatics (LIPIcs), vol. 11, pp. 84–94. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2011), http://drops.dagstuhl.de/opus/volltexte/2011/3176 Google Scholar
  20. 20.
    Gharib, T.F., Nassar, H., Taha, M., Abraham, A.: An efficient algorithm for incremental mining of temporal association rules. Data Knowl. Eng. 69(8), 800–815 (2010), http://dx.doi.org/10.1016/j.datak.2010.03.002 CrossRefGoogle Scholar
  21. 21.
    Gu, T., Pung, H.K., Zhang, D.Q., Wang, X.H.: A middleware for building context-aware mobile services. In: Proceedings of IEEE Vehicular Technology Conference (VTC) (2004)Google Scholar
  22. 22.
    Hu, H.: ContextTorrent: A Context Provisioning Framewrok for Pervasive Applications. University of Hong Kong (2011)Google Scholar
  23. 23.
    Jung, J.J.: Contextualized mobile recommendation service based on interactive social network discovered from mobile users. Expert Syst. Appl. 36(9), 11950–11956 (2009), http://dx.doi.org/10.1016/j.eswa.2009.03.067 CrossRefGoogle Scholar
  24. 24.
    Ligęza, A., Nalepa, G.J.: A study of methodological issues in design and development of rule-based systems: proposal of a new approach. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(2), 117–137 (2011)Google Scholar
  25. 25.
    Nalepa, G.J., Bobek, S., Ligęza, A., Kaczor, K.: Algorithms for rule inference in modularized rule bases. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe. LNCS, vol. 6826, pp. 305–312. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Nalepa, G.J., Bobek, S.: Rule-based solution for context-aware reasoning on mobile devices. Computer Science and Information Systems 11(1), 171–193 (2014)CrossRefGoogle Scholar
  27. 27.
    Nalepa, G.J., Ligęza, A., Kaczor, K.: Formalization and modeling of rules using the XTT2 method. International Journal on Artificial Intelligence Tools 20(6), 1107–1125 (2011)CrossRefGoogle Scholar
  28. 28.
    Olguin, D., Waber, B.N., Kim, T., Mohan, A., Ara, K., Pentland, A.: Sensible organizations: Technology and methodology for automatically measuring organizational behavior. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 43–55 (2009)Google Scholar
  29. 29.
    Ranganathan, A., McGrath, R.E., Campbell, R.H., Mickunas, M.D.: Use of ontologies in a pervasive computing environment. Knowl. Eng. Rev. 18(3), 209–220 (2003)CrossRefGoogle Scholar
  30. 30.
    Roy, P.V.: 1983-1993: The Wonder Years of Sequential Prolog Implementation. J. Log. Program. 19/20, 385–441 (1994), http://dblp.uni-trier.de/db/journals/jlp/jlp19.html#Roy94 CrossRefGoogle Scholar
  31. 31.
    Wielemaker, J.: SWI Prolog Reference Manual 6.2.2. Books on Demand (2012), http://books.google.nl/books?id=q6R3Q3B-VC4C
  32. 32.
    van Wissen, B., Palmer, N., Kemp, R., Kielmann, T., Bal, H.: ContextDroid: an expression-based context framework for Android. In: Proceedings of PhoneSense 2010 (November 2010), http://sensorlab.cs.dartmouth.edu/phonesense/papers/Wissen-ContextDroid.pdf
  33. 33.
    Van Woensel, W., Casteleyn, S., De Troyer, O.: A Framework for Decentralized, Context-Aware Mobile Applications Using Semantic Web Technology. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 88–97. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Szymon Bobek
    • 1
  • Grzegorz J. Nalepa
    • 1
  • Mateusz Ślażyński
    • 1
  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations