Methods for Face Localization in Static Colour Images with an Unknown Background

  • Mariusz Marzec
  • Aleksander Lamża
  • Zygmunt Wróbel
  • Andrzej Dziech
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 429)


This paper analyses the practical application of the methods for face and head localization in colour images with varying background. The Haar Cascade Classifier and Local Binary Pattern were selected as basic methods because of their high efficiency in this type of applications. The results obtained in the test set of images prompted the authors to choose the Haar Cascade Classifier. This method was then implemented in the face detection module, which is part of a comprehensive system for determining the forbidden regions.


Local Binary Pattern Face Detection Head Area Face Localization Local Binary Pattern Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beigzadeh, M., Mafadoost, M.: Detection of Face and Facial Features in digital Images and Video Frames. In: Cairo International Biomedical Engineering Conference, CIBEC 2008, pp. 1–4 (2008)Google Scholar
  2. 2.
    Zhang, C., Zhang, Z.: A Survey of Recent Advances in Face Detection. Technical report, Microsoft Research, 577 (2010)Google Scholar
  3. 3.
    Yang, M., Kriegman, J., Ahuja, N.: Detecting faces in images: A survey. IEEE Transaction on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)CrossRefGoogle Scholar
  4. 4.
    Miao, J., Gao, W., Chen, Y., Lu, J.: Gravity-center template based human face feature detection. In: Tan, T., Shi, Y., Gao, W. (eds.) ICMI 2000. LNCS, vol. 1948, pp. 207–214. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.: Face detection in color images. IEEE Pattern Analysis and Machine Intelligence 24, 696–706 (2002)CrossRefGoogle Scholar
  6. 6.
    Phung, S.L., Bouzerdoum, A., Chai, D., Kuczborski, W.: A color-based approach to automatic face detection. In: Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology, pp. 531–534 (2003)Google Scholar
  7. 7.
    Lanitis, A., Taylor, C., Cootes, T.F.: An Automatic Face Identification System Using Flexible Appearance Models. Image and Vision Computing 13(5), 392–401 (1995)CrossRefGoogle Scholar
  8. 8.
    Chan, Y.H., Bakar, S.A., Rahman, S.A.: Face Detection System Based on Feature-Based Chrominance Colour Information. In: International Conference on Computer Graphics, Imaging and Visualization, pp. 153–158 (2004)Google Scholar
  9. 9.
    Mostafa, L., Abdelazeem, S.: Face detection Based on Skin Color using Neural Network. In: GVIP 2005 Conference, Cairo, Egypt, pp. 53–58 (December 2005)Google Scholar
  10. 10.
    Jo, C.-Y.: Face detection using lbp features. Tech. Rep., Stanford University. CS 229 Final Project Report (December 2008)Google Scholar
  11. 11.
    Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z.: Face Detection Based on Multi-Block LBP Representation. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 11–18. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of 2001 IEEE International Conference on Computer Vision and Pattern Recognition, pp. 511–518 (2001)Google Scholar
  13. 13.
    Padilla, R., Costa Filho, C.F.F., Costa, M.G.F.: Evaluation of Haar Cascade Classifiers Designed for Face Detection. World Academy of Science, Engineering and Technology 64 (2012)Google Scholar
  14. 14.
    Ramirez, G.A., Fuentes, O.: Multi-Pose Face Detection with Asymmetric Haar Features. In: IEEE Workshop on Applications of Computer Vision, WACV 2008, pp. 1–6 (2008)Google Scholar
  15. 15.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mariusz Marzec
    • 1
  • Aleksander Lamża
    • 1
  • Zygmunt Wróbel
    • 1
  • Andrzej Dziech
    • 2
  1. 1.Department of Computer Biomedical Systems, Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland
  2. 2.Faculty of Mining Surveying and Environmental EngineeringAGH University of Science and TechnologyKrakówPoland

Personalised recommendations