Fuzzy Classification Method for Knife Detection Problem

  • Aleksandra Maksimova
  • Andrzej Matiolański
  • Jakob Wassermann
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 429)

Abstract

In this paper we propose a new approach for pattern recognition problems with non-uniform classes of images. The main idea of this classification method is to describe classes of images with their fuzzy portraits. This approach provides good generalizing ability of algorithm. The fuzzy set is calculated as a preliminary result of algorithm before crisp decision or rejecting that allows to solve a problem of uncertainly at the boundaries of classes. We use the method to solve the problem of knife detection in still images. The main idea of this study is to test fuzzy classification with features vectors in real environment. As a feature vectors we decided to use selected MPEG-7 descriptors schemes. The described method was experimentally validated on dataset with over 12 thousands images. The article contains results of five experiments which confirm good accuracy of the proposed method.

Keywords

pattern recognition fuzzy classifier fuzzy inference data analysis knife detection feature descriptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Żywicki, M., Matiolański, A., Orzechowski, T.M., Dziech, A.: Knife detection as a subset of object detection approach based on Haar cascades. In: Proceedings of 11th International Conference on Pattern Recognition and Information Processing, Minsk, Belarus, pp. 139–142 (2011)Google Scholar
  2. 2.
    Glowacz, A., Kmieć, M., Dziech, A.: Visual Detection of Knives in Security Applications using Active Appearance Models. Multimedia Tools and Applications (2013)Google Scholar
  3. 3.
    Maksimova, A.: Knife Detection Scheme Based on Possibilistic Shell Clustering. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2013. CCIS, vol. 368, pp. 144–152. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Konor, A.: Computational Intelligence: Principles, Techniques and Applications. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Kuncheva, L.I.: Fuzzy Classifier Design. Physica-Verlag, Heidelberg (2005)Google Scholar
  6. 6.
    Ishibuchi, H., Nakashima, T., Nii, M.: Classification and Modeling with Linguistic Information Granules. Springer (2005)Google Scholar
  7. 7.
    Chen, N.: Fuzzy Classification Using Self-Organizing Map and Learning Vector Quantization. In: Shi, Y., Xu, W., Chen, Z. (eds.) CASDMKM 2004. LNCS (LNAI), vol. 3327, pp. 41–50. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Bezdek, J.C., Keller, J., Krisnapuram, R., Pal, R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Springer, New York (2005)Google Scholar
  9. 9.
    Baran, R., Glowacz, A., Matiolanski, A.: The efficient real- and non-real-time make and model recognition of cars. Multimedia Tools and Applications (2013)Google Scholar
  10. 10.
    Information Won, C.S., Park, D.K., Park, S.-J.: Efficient Use of MPEG-7 Edge Histogramm. ETRI J. 24(1), 23–30 (2002)CrossRefGoogle Scholar
  11. 11.
    Ro, Y.M., Kim, M., Kang, H.K., Manjunath, B.S., Kim, J.: MPEG-7 Homogeneous Texture Descriptor. ETRI Journal 23(2), 41–51 (2001)CrossRefGoogle Scholar
  12. 12.
    Yu, M.A., Kozlovskii, V.A.: Algorithm of Pattern Recognition with intra-class clustering. In: Proceedings of 11th International Conference on Pattern Recognition and Processing, Minsk, pp. 54–57 (2011)Google Scholar
  13. 13.
    Pal, N.R., Bezdek, J.C.: On Cluster Validity for the Fuzzy c-Means Model. J. IEEE Transactions on Fuzzy Systems 3(3), 370–379 (1995)CrossRefGoogle Scholar
  14. 14.
    Maksimova, A.: Decision Making Method for Classifying Models Based on Intra-class Clustering on FCM-algorithm. Artificial Intelligent J. 3(61), 171–178 (2013) (in Russian) Google Scholar
  15. 15.
    Maksimova, A.: The Model of Data Presentation with Fuzzy Portraits for Pattern Recognition. Int. J. of Computing 11(1), 17–24 (1995)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Aleksandra Maksimova
    • 1
  • Andrzej Matiolański
    • 2
  • Jakob Wassermann
    • 3
  1. 1.Institute of Applied Mathematics and MechanicsNational Academy of Science of UkraineDonetskUkraine
  2. 2.Department of TelecommunicationAGH University of Science and TechnologyKrakowPoland
  3. 3.Department of Electronic EngineeringUniversity of Applied Sciences Technikum WienWienAustria

Personalised recommendations