Skip to main content

Simple Extensions of Polytopes

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8494))

  • 1561 Accesses

Abstract

We introduce the simple extension complexity of a polytope P as the smallest number of facets of any simple (i.e., non-degenerate in the sense of linear programming) polytope which can be projected onto P. We devise a combinatorial method to establish lower bounds on the simple extension complexity and show for several polytopes that they have large simple extension complexities. These examples include both the spanning tree and the perfect matching polytopes of complete graphs, uncapacitated flow polytopes for non-trivially decomposable directed acyclic graphs, and random 0/1-polytopes with vertex numbers within a certain range. On our way to obtain the result on perfect matching polytopes we improve on a result of Padberg and Rao’s on the adjacency structures of those polytopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avis, D., Tiwary, H.R.: On the extension complexity of combinatorial polytopes. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 57–68. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Dantzig, G.B.: Linear Programming and Extensions. Princeton landmarks in mathematics and physics. Princeton University Press (1963)

    Google Scholar 

  3. Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.O.: Combinatorial bounds on nonnegative rank and extended formulations. arXiv:1111.0444 (2011) (to appear in: Discrete Math.)

    Google Scholar 

  4. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. In: Karloff, H.J., Pitassi, T. (eds.) STOC, pp. 95–106. ACM (2012)

    Google Scholar 

  5. Gallo, G., Sodini, C.: Extreme points and adjacency relationship in the flow polytope. Calcolo 15, 277–288 (1978), 10.1007/BF02575918

    Google Scholar 

  6. Gillmann, R.: 0/1-Polytopes Typical and Extremal Properties. PhD thesis, Technische Universität, Berlin (2007)

    Google Scholar 

  7. Goemans, M.: Smallest compact formulation for the permutahedron (2009), http://www-math.mit.edu/~goemans/publ.html

  8. Kaibel, V., Pashkovich, K., Theis, D.O.: Symmetry matters for sizes of extended formulations. SIAM J. Disc. Math. 26(3), 1361–1382 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kipp Martin, R.: Using separation algorithms to generate mixed integer model reformulations. Oper. Res. Lett. 10(3), 119–128 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Padberg, M.W., Rao, M.R.: The travelling salesman problem and a class of polyhedra of diameter two. Math. Program. 7, 32–45 (1974), 10.1007/BF01585502

    Google Scholar 

  11. Pashkovich, K.: Symmetry in extended formulations of the permutahedron (2009)

    Google Scholar 

  12. Pokutta, S., Van Vyve, M.: A note on the extension complexity of the knapsack polytope. Oper. Res. Lett. 41(4), 347–350 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rothvoß, T.: Some 0/1 polytopes need exponential size extended formulations. Math. Program, 1–14 (2012)

    Google Scholar 

  14. Rothvoß, T.: The matching polytope has exponential extension complexity. arXiv:1311.2369 (November 2013)

    Google Scholar 

  15. Santos, F.: A counterexample to the hirsch conjecture. Annals of Mathematics. Second Series 176(1), 383–412 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43(3), 441–466 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ziegler, G.M.: Lectures on Polytopes (Graduate Texts in Mathematics). Springer (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kaibel, V., Walter, M. (2014). Simple Extensions of Polytopes. In: Lee, J., Vygen, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2014. Lecture Notes in Computer Science, vol 8494. Springer, Cham. https://doi.org/10.1007/978-3-319-07557-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07557-0_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07556-3

  • Online ISBN: 978-3-319-07557-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics