Skip to main content

HPLAN: Facilitating the Implementation of Joint Human-Agent Activities

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8473)

Abstract

When it comes to planning for joint human-agent activities, one has to consider not only flexible plan execution and social constraints but also the dynamic nature of humans. This can be achieved by providing additional information about the characteristics of a human. As an example one need to take the physical and psychological condition of the elderly into consideration when developing collaborative applications like socially assistive robots. This work outlines Hplan, an extension to the agent-framework JIAC V, that takes this requirement into account. Hplan is strongly related to the conceptual model of dynamic planning components and integrates humans as avatars into a life cycle of planning, execution and learning.

Keywords

  • Planning Process
  • Plan Execution
  • Planning Language
  • Action Description
  • Assistive Robot

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07551-8_1
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-07551-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrndt, S.: Improving human-aware planning. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013. LNCS, vol. 8076, pp. 400–403. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  2. Alami, R., Clodic, A., Montreuil, V., Sisbot, E.A., Chatila, R.: Task planning for human-robot interaction. In: Bailly, G., Crowley, J.L., Privat, G. (eds.) Proc. of the sOc-EUSAI 2005, pp. 81–85. ACM Press (2005)

    Google Scholar 

  3. Alili, S., Warnier, M., Ali, M., Alami, R.: Planning and plan-execution for human-robot cooperative task achievement. In: Proc. of the 19th ICAPS, pp. 1–6 (2009)

    Google Scholar 

  4. Cirillo, M., Karlsson, L., Saffiotti, A.: Human-aware task planning: An application to mobile robots. ACM Trans. Intell. Syst. Technol. 1(2), 1–26 (2010)

    CrossRef  Google Scholar 

  5. Clark, H.H.: Using Language. Cambridge Univ. Press (1996)

    Google Scholar 

  6. Claus, C., Boutilier, C.: Thy dynamics of reinforcement learning in cooperative multiagent systems. In: Proc. of the 15th AAAI, pp. 746–752 (1998)

    Google Scholar 

  7. Ebert, P.: Improving Human-Aware Planning through Reinforcement Learning – A Multi-Agent Based Approach. Master’s thesis, TU Berlin (2013)

    Google Scholar 

  8. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal planning domains. Artifical Intelligence Research 20, 61–124 (2003)

    MATH  Google Scholar 

  9. Ghallab, M., Howe, A., Knoblock, C., et al.: PDDL – The Planning Domain Definition Language. Yale Center for Computational Vision and Control (1998)

    Google Scholar 

  10. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kaufmann (2004)

    Google Scholar 

  11. Gupta, N., Nau, D.S.: On the complexity of blocks-world planning. Artifical Intelligence 56(2-3), 223–254 (1992)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)

    CrossRef  Google Scholar 

  13. Hirsch, B., Konnerth, T., Heßler, A.: Merging agents and services – the JIAC agent platform. In: Bordini, R.H., Dastani, M., Dix, J., Amal, E.F.S. (eds.) Multi-Agent Programming: Languages, Tools and Applications, pp. 159–185. Springer (2009)

    Google Scholar 

  14. Kirsch, A., Kruse, T., Mösenlechner, L.: An integrated planning and learning framework for human-robot interaction. In: Proc. of the 19th ICAPS, pp. 1–6 (2009)

    Google Scholar 

  15. Kirsch, A., Kruse, T., Sisbot, E.A., et al.: Plan-based control of joint human-robot activities. KI – Künstliche Intelligenz 24(3), 223–231 (2010)

    CrossRef  Google Scholar 

  16. Klein, G., Woods, D.D., Bradshaw, J.M., Hoffmann, R.R., Feltovich, P.J.: Ten challenges for making automation a ‘team player’ in joint human-agent activity. Human-Centered Computing 19(6), 91–95 (2004)

    Google Scholar 

  17. Lützenberger, M., Küster, T., Konnerth, T., et al.: JIAC V –A MAS framework for industrial applications (extended abstract). In: Ito, T., Jonker, C., Gini, M., Shehory, O. (eds.) Proc. of the 12th AAMAS, pp. 1189–1190 (2013)

    Google Scholar 

  18. McCrea, R.R., John, O.P.: An introduction to the five-factor model and its applications. Personality 60(2), 175–215 (1992)

    CrossRef  Google Scholar 

  19. Montreuil, V., Clodic, A., Alami, R.: Planning human centered robot activities. In: IEEE SMC, pp. 2618–2623 (2007)

    Google Scholar 

  20. Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A human aware mobile robot motion planner. IEEE Transactions on Robotics 23(5), 874–883 (2007)

    CrossRef  Google Scholar 

  21. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Adaptive Computation and Machine Learning. MIT Press (May 1998)

    Google Scholar 

  22. Tapus, A., Matarić, M.J., Scassellati, B.: The grand challenges in socially assistive robotics. IEEE Robotics and Automation Magazin 14(1), 35–42 (2007)

    CrossRef  Google Scholar 

  23. Wiener, J.M., Hanley, R.J., Clark, R., Nostrand, J.F.V.: Measuring the activities of daily living: Comparison across national surveys. Tech. rep., U.S. Department of Health and Human Services (1990), http://aspe.hhs.gov/daltcp/reports/meacmpes.pdf (last access: February 25, 2014)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ahrndt, S., Ebert, P., Fähndrich, J., Albayrak, S. (2014). HPLAN: Facilitating the Implementation of Joint Human-Agent Activities. In: Demazeau, Y., Zambonelli, F., Corchado, J.M., Bajo, J. (eds) Advances in Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection. PAAMS 2014. Lecture Notes in Computer Science(), vol 8473. Springer, Cham. https://doi.org/10.1007/978-3-319-07551-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07551-8_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07550-1

  • Online ISBN: 978-3-319-07551-8

  • eBook Packages: Computer ScienceComputer Science (R0)