Verifiable Multi-server Private Information Retrieval

  • Liang Feng Zhang
  • Reihaneh Safavi-Naini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8479)


Private information retrieval (PIR) allows a client to retrieve any block x i from a database x = x 1 ⋯ x n (stored on a server) such that i remains hidden from the server. PIR schemes with unconditional privacy and sublinear (in n) communication complexity can be constructed assuming multiple honest-but-curious servers. This assumption however cannot be guaranteed in many real life scenarios such as using cloud servers. There are also extra properties such as efficient update of the database. In this paper, we consider a verifiable multi-server PIR (VPIR) model where the servers may be malicious and provide fraudulent answers. We construct an unconditionally t-private and computationally secure k-server VPIR scheme with communication complexity comparable to the best t-private k-server PIR scheme in the honest-but-curious server model. Our scheme supports efficient update of the database, identification of the cheating servers, tolerance of slightly corrupted answers, and multiple database outsourcing.


Cloud Server Communication Complexity Main Construction Overwhelming Probability Probabilistic Polynomial Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beimel, A.: Private Information Retrieval: A Primer (2008) (manuscript)Google Scholar
  2. 2.
    Beimel, A., Ishai, Y., Kushilevitz, E.: General Constructions for Information-Theoretic Private Information Retrieval. J. Comput. Syst. Sci. 71(2), 213–247 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Beimel, A., Ishai, Y., Malkin, T.: Reducing the Servers’ Computation in Private Information Retrieval: PIR with Preprocessing. J. Cryptol. 17(2), 125–151 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Beimel, A., Stahl, Y.: Robust Information-Theoretic Private Information Retrieval. J. Cryptol. 20(3), 295–321 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval. In: FOCS, pp. 41–50 (1995)Google Scholar
  6. 6.
    Devet, C.: Evaluating Private Information Retrieval on the Cloud. Technical Report (2013),
  7. 7.
    Devet, C., Goldberg, I., Heninger, N.: Optimally Robust Private Information Retrieval. In: USENIX Security Symposium (2012)Google Scholar
  8. 8.
    Gennaro, R., Gentry, C., Parno, B.: Non-Interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Goldberg, I.: Improving the Robustness of Private Information Retrieval. In: IEEE Symposium on Security and Privacy, pp. 131–148 (2007)Google Scholar
  10. 10.
    Goldreich, O., Micali, S., Widgerson, A.: How to Play any Mental Game-A Completeness Theorem for Protocols with Honest Majority. In: STOC, pp. 218–229. ACM (1987)Google Scholar
  11. 11.
    Groth, J., Kiayias, A., Lipmaa, H.: Multi-query Computationally-Private Information Retrieval with Constant Communication Rate. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Huang, Y., Goldberg, I.: Outsourced Private Information Retrieval. In: Workshop on Privacy in the Electronic Society, pp. 119–130. ACM (2013)Google Scholar
  13. 13.
    Kushilevitz, E., Ostrovsky, R.: Replication Is Not Needed: Single Database, Computationally-Private Information Retrieval. In: FOCS, pp. 364–373 (1997)Google Scholar
  14. 14.
    Mayberry, T., Blass, E., Chan, A.: PIRMAP: Efficient Private Information Retrieval for MapReduce. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 371–385. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Papamanthou, C., Shi, E., Tamassia, R.: Signatures of Correct Computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (2013), CrossRefGoogle Scholar
  16. 16.
    Sion, R., Carbunar, B.: On the Computational Practicality of Private Information Retrieval. In: NDSS 2007 (2007)Google Scholar
  17. 17.
    Woodruff, D.P., Yekhanin, S.: A Geometric Approach to Information-Theoretic Private Information Retrieval. SIAM J. Comp. 37(4), 1046–1056 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Liang Feng Zhang
    • 1
  • Reihaneh Safavi-Naini
    • 1
  1. 1.Institute for Security, Privacy and Information Assurance, Department of Computer ScienceUniversity of CalgaryCanada

Personalised recommendations