History of Solar Cell Development



It has been 175 years since 1839 when Alexandre Edmond Becquerel observed the photovoltaic (PV) effect via an electrode in a conductive solution exposed to light [1]. It is instructive to look at the history of PV cells [2] since that time because there are lessons to be learned that can provide guidance for the future development of PV cells.


Alexandre Edmond Becquerel Photovoltaics (PV) Selenium cell Copper and copper oxide cell Einstein’s photon theory Czochralski crystal growth Bell labs silicon cell Telstar communication satellite Arab oil embargo AlGaAs/GaAs solar cell InGaP/GaInAs/Ge triple junction cell Amorphous silicon (a-Si) solar cell Public utility regulation act (PURPA) National renewable energy lab (NREL) InGaP/GaAs two junction cell GaAs/GaSb stacked cell Photovoltaic advanced space power (PASP+) flight Concentrator photovoltaics (CPV) GaSb infrared cells 


  1. 1.
    E. Becquerel, Mémoire sur les effets électriques produits sous l’influence des rayons solaires. Comptes Rendus 9, 561–567 (Issue date: 7 May 1935) (1839)Google Scholar
  2. 2.
  3. 3.
    W.G. Adams, R.E. Day, The action of light on selenium. Proc R Soc A25, 113 (1877)Google Scholar
  4. 4.
    A. Einstein, On the quantum theory of radiation. Physikalische Zeitschrift 18 (1917)Google Scholar
  5. 5.
    D.C. Brock, Useless no more, ed. by K. Gordon Teal, Germanium, and Single-Crystal Transistors. Chemical Heritage Newsmagazine (Chemical Heritage Foundation, Spring) vol. 24, no. 1. Accessed 21 Jan 2008 (2006)Google Scholar
  6. 6.
    F. Bloch, Z. Phys 52, 555 (1928)CrossRefzbMATHGoogle Scholar
  7. 7.
    A.H. Wilson, Proc. Roy. Soc. A, 133, 458; 134, 277 (1931)Google Scholar
  8. 8.
    D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954). doi: 10.1063/1.1721711 CrossRefGoogle Scholar
  9. 9.
    G.L. Pearson, D.M. Chapin, C.S. Fuller, (AT&T) Receive patent US2780765, Solar Energy Converting Apparatus (1957)Google Scholar
  10. 10.
  11. 11.
  12. 12.
    Z.I. Alferov, V.M. Andreev, M.B. Kagan, I.I. Protasov, V.G. Trofim, ‘Solar-energy converters based on p-n AlxGa12xAs-GaAs heterojunctions, Fiz. Tekh. Poluprovodn. 4, 2378 (Sov. Phys. Semicond. 4, 2047 (1971)) (1970)Google Scholar
  13. 13.
    H.J. Hovel, J.M. Woodall, High efficiency AlGaAs-GaAs solar cells. Appl. Phys. Lett. 21, 379–381 (1972)CrossRefGoogle Scholar
  14. 14.
    R. Loo, R. Knechtli, S. Kamath et al., in Electron and Proton Degradation in AlGaAs-GaAs Solar Cells. 13th IEEE Photovoltaic Specialist Conference, vol. 562 (1978)Google Scholar
  15. 15.
    L.M. Fraas, R.C. Knechtli, in Design of High Efficiency Monolithic Stacked Multijunction Solar Cells. 13th IEEE Photovoltaic Specialist Conference, vol. 886 (1978)Google Scholar
  16. 16.
    D.E. Carlson, C.R. Wronski, Amorphous silicon solar cell. Appl. Phys. Lett. 28, 671 (1976)CrossRefGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
    Friedman D et al., Prog. Photovolt.: Res. Appl. 3, 47–50 (1995)Google Scholar
  20. 20.
    F. Lewis, A. James, G. James, E. Keith et al., Over 35 % Efficient GaAs/GaSb Stacked Concentrator Cell Assemblies for Terrestrial Applications, 21st IEEE PV Specialist Conference, p. 190 (1990)Google Scholar
  21. 21.
  22. 22.
  23. 23.
    F. Lewis, B. Russ, H. She, Y. Shi-Zhong, G. Sean, K. Jason, A. James, L. David, D. Bert, Commercial GaSb cell and circuit development for the Midnight Sun® TPV stove. AIP Conf. Proc. 460(1), 480–487 (1999). doi: 10.1063/1.57830
  24. 24.
  25. 25.
  26. 26.
  27. 27.
  28. 28.
    _MAR_19_Recent_Facts_about_PV_in_Germany—Final.docx26.03.14Google Scholar
  29. 29.
  30. 30.
    K. Araki et al., A 28 % Efficient, 400 X & 200 WP Concentrator …,…/pdf/19thEUPV_5BV_2_20.pdf

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.JX Crystals Inc.BellevueUSA

Personalised recommendations