Advertisement

Biomarker and Biometric Indices of Cognitive Decrements due to Physical Exhaustion

  • Regina M. Shia
  • Kyle Traver
  • Lindsey K. McIntire
  • Josh A. Hagen
  • Chuck D. Goodyear
  • Leanne N. Dykstra
  • Andrea R. Myers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8534)

Abstract

State of the art sensors and diagnostic tools are continuously being researched, tested, and procured for every piece of high tech equipment in the Air Force while the most critical asset, the Airman, lacks diagnostics to analyze physiological well being and cognitive performance. Eighteen active duty Air Force males completed a physical exhaustion task on a treadmill while performing two cognitive tasks and while having various biometrics and biomarkers collected. We found that while physiological variables exhibited reliable indices of physical exertion, biological changes were found to be more related to cognitive changes.

Keywords

Biomarkers Physical Exhaustion Cognitive Performance Biometrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Froom, Caine, Shochat, Ribak: Heat stress and helicopter pilot errors. Journal of Occupational Medicine 35(7), 720–724 (1993)Google Scholar
  2. 2.
    Smith, D.L., Petruzzello, S.J., Kramer, J.M., Warner, S.E., Bone, B.G., Misner, J.E.: Selected physiological and psychobiological rsponses to physical activity in different configurations of firefighting gear. Ergonomics 38(10), 2065–2077 (1995)CrossRefGoogle Scholar
  3. 3.
    Cian, C., Koulmann, N., Barraud, P., Raphel, C., Jimenez, C., Melin, B.: Influence of variations in body hydration on cognitive function: Effect of hyperhydration, heat stress, and exercise-induced dehydration. Journal of Psychophysiology 14, 29–36 (2000)CrossRefGoogle Scholar
  4. 4.
    Gopinathan, P.M., Pichan, G., Sharma, V.M.: Role of dehydration in heat stress induced variations in mental performance. Archives of Environmental Health 43, 15–17 (1988)CrossRefGoogle Scholar
  5. 5.
    Radakovic, S.S., Maric, J., Surbatovic, M., Radjen, S., Stefanova, E., Stankovic, N., et al.: Effects of acclimation on cognitive performance in soldiers during exertional heat stress. Military Medicine 172(2), 133–136 (2007)Google Scholar
  6. 6.
    Davey, C.P.: Physical exertion and mental performance. Ergonomics 16(5), 595–599 (1973)CrossRefGoogle Scholar
  7. 7.
    Mozrall, J.R., Drury, C.G.: Effects of physical exertion on task performance in modern manufacturing: A taxonomy, a review, and a model. Ergonomics 39(10), 1179–1213 (1996)CrossRefGoogle Scholar
  8. 8.
    Dienstbier, R.A.: Arousal and physiological toughness: Implications for mental and physical health. Faculty Publications, Department of Psychology, Paper 216 (1989)Google Scholar
  9. 9.
    Miller, L.: Shocks to the system: Psychotherapy of traumatic disability syndromes, p. 281. W. W. Norton, New York (1998)Google Scholar
  10. 10.
    O’Hanlon, J.F., Beatty, J.: Catecholamine correlates of radar monitoring performance. Biological Psychology 4, 293–304 (1976)CrossRefGoogle Scholar
  11. 11.
    Ellertsen, B., Johnsen, T.B., Ursin, H.: Relationship between the hormonal responses to activation and coping. In: Ursin, H., Baade, E., Levine, S. (eds.) Psychobiology of Stress: A Study of Coping Men, pp. 105–124. Academic Press, New York (1978)Google Scholar
  12. 12.
    Eysenck, H.J.: Stress, disease, and personality: The “inoculation effect”. In: Cooper, C.L. (ed.) Stress Research: Issues for the Eighties, pp. 121–146. Wiley, Chichester (1983)Google Scholar
  13. 13.
    Baum, A.S.: Chronic and extreme stress: Psychobiological influences on health. Paper presented at the Annual Meeting of the American Psychological Association, Washington, DC (1986)Google Scholar
  14. 14.
    Collins, D.L., Baum, A., Singer, J.E.: Coping with chronic stress at Three Mile Island: Psychological and biochemical evidence. Health Psychology 2, 149–166 (1983)CrossRefGoogle Scholar
  15. 15.
    Meeusen, R., Watson, P., Hasegawa, H., Roelands, B., Piacentini, M.F.: Central fatigue: The serotonin hypothesis and beyond. Sports Medicine 36(10), 881–909 (2006)CrossRefGoogle Scholar
  16. 16.
    Newsholme, E.A., Acworth, I., Blomstrand, E.: Amino acids, brain neurotransmitters and a function link between muscle and brain that is important in sustained exercise. In: Benzi, G. (ed.) Advances in Myochemistry, pp. 127–133. John Libbey Eurotext, London (1987)Google Scholar
  17. 17.
    Davis, J.M., Alderson, N.L., Welsh, R.S.: Serotonin and central nervous system fatigue: nutritional considerations. The American Journal of Clinical Nutrition 72(2), 573–578 (2000)Google Scholar
  18. 18.
    Blomstrand, E.: Amino acids and central fatigue. Amino Acids 20, 25–34 (2001)CrossRefGoogle Scholar
  19. 19.
    Deadwyler, S.A., Porrino, L., Siegel, J.M., Hampson, R.E.: Systematic and nasal delivery of Orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. The Journal of Neuroscience 27(52), 14239–14247 (2007)CrossRefGoogle Scholar
  20. 20.
    Penetar, D.M., McCann, U., Thorne, D., Kamimori, G., Galinski, C., Sing, H., Thomas, M., Belenky, G.: Caffeine reversal of sleep deprivation effects on alertness and mood. Psychopharmacology 112, 359–365 (1993)CrossRefGoogle Scholar
  21. 21.
    Lezak, M.D.: Neuropsychological assessment, 3rd rev. edn. Oxford University Press, New York (1995)Google Scholar
  22. 22.
    Hunter, D.R.: Development of an enlisted psychomotor/perceptual test battery. Lackland Air Force Base, TX: Air Force Human Resources Laboratory, Personnel Research Division. Report No. AFHRL-TR-75–60 (1975)Google Scholar
  23. 23.
    Dinges, D.F., Pack, F., Williams, K., Gillen, K.A., Powell, J.W., Ott, G.E., Aptowicz, C., Pack, A.I.: Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night. Sleep 20, 267–277 (1997)Google Scholar
  24. 24.
    Hagan, J.J., Leslie, R.A., Patel, S., Evans, M.L., Wattam, T.A., Holmes, S., et al.: Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proceedings of the National Academy of Sciences of the United States of America 96, 10911–10916 (1999)CrossRefGoogle Scholar
  25. 25.
    John, J., Wu, M.F., Siegel, J.M.: Systemic administration of hypocretin-1 reduces cataplexy and normalizes sleep and waking durations in narcoleptic dogs. Journal of Sleep Research 3, 23–28 (2000)Google Scholar
  26. 26.
    Mileykovskiy, B.Y., Kiyashchenko, L.I., Siegel, J.M.: Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46, 787–798 (2005)CrossRefGoogle Scholar
  27. 27.
    Siegel, J.M.: The neurotransmitters of sleep. Journal of Clinical Psychiatry 65(suppl. 16), 4–7 (2004)Google Scholar
  28. 28.
    Dienstbier, R.A.: Behavioral correlates of sympathoadrenal reactivity: The toughness model. Medicine and Science in Sports and Exercise 23(7), 846–852 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Regina M. Shia
    • 1
  • Kyle Traver
    • 1
  • Lindsey K. McIntire
    • 2
  • Josh A. Hagen
    • 3
  • Chuck D. Goodyear
    • 2
  • Leanne N. Dykstra
    • 4
  • Andrea R. Myers
    • 5
  1. 1.Warfighter Interface Division, Applied Neuroscience Branch711th Human Performance WingUSA
  2. 2.Infoscitex, Inc.DaytonUSA
  3. 3.Human-Centered ISR Division, Molecular Signatures Branch711th Human Performance WingUSA
  4. 4.SOCHE InternDaytonUSA
  5. 5.UES, Inc.BeavercreekUSA

Personalised recommendations