Skip to main content

Financial Modelling and Memory: Mathematical System

  • Chapter
  • First Online:
Future Perspectives in Risk Models and Finance

Abstract

Data based search for patterns are of concern to almost all fields of studies and research. To do so, parametric mathematical models are constructed to explain observed data sets, forecast future prices, etc. The models we use are extremely varied, seeking to be reliable, robust and explanatory. Financial models for example have for the most part assumed models that are based on drift and randomness to construct models of asset prices. Typical examples include random walks and stochastic (Brownian motion) differential equations (such as a lognormal process) as well as Poisson and Jump stochastic processes. These latter models are based on events that occur at random and independent times. They assume also a number of simplifying assumptions, all of which are either explicit or implicit. For example, stochastic differential equations assume that data can be expressed in terms of two statistical properties: the data drift and its volatility, both of which are defined in terms of underlying (Brownian motion) normally and statistically distributed events. By the same token, Poisson-like jump processes are defined in terms of a memory-less process (with independent inter-events time distributions). To circumvent some of their assumptions, more complex and multi-variable models are used to account for observations that such models fail to explain. For the most part these models are based on both a rationality and an experience acquired based on theoretical constructs and on data analyses. These models are extremely useful, and provide an ex-ante interpretation for the behavior of data sets as well define the statistical properties of observed financial variables. Ex-post, however, these models may default since all models are merely an educated hypothesis of underlying processes. Modeling financial processes is therefore a work in process, in search for coherent and complete mathematical systems that can on the one hand be justified theoretically and on the other account far more precisely for observed data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson R. C., and R. M. Shiffrin. 1968. Human memory: A proposed system and its control process. In The psychology of learning and motivation, ed. K. W. Spence and J. T. Spence, 2 vols, 89–195. New York: Academic Press.

    Google Scholar 

  • Bachelier, L. 1900. Théorie de la speculation. Annales Scientifiques de L’École Normale Supérieure 17:21–86 (English translation by A. J. Boness in Cootner, P. H. (ed.). 1964. The random character of stock market prices. 17–75. Cambridge: MIT Press).

    Google Scholar 

  • Bachelier, L. 1901. Théorie mathématique du jeu. Annales de L’École Normale Supèrieure 18:143–210.

    Google Scholar 

  • Baddeley, A. 1994. The magical number 7after all these years. Psychological Review 101 (2): 353–356.

    Article  Google Scholar 

  • Baddeley, A. 2003. Working memory: Looking back and looking forward. Nature Reviews Neuroscience 4 (10): 829–839.

    Article  Google Scholar 

  • Balinth, Toth. 1986. Persistent random walks in random environments. Probability Theory and Related Fields 71:615–625.

    Article  Google Scholar 

  • Barkai, E.. 2001. Fractional Fokker-Planck equation, solution, and application. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics 63:046118.

    Article  Google Scholar 

  • Beghin, L., and E. Orsingher. 2009. Fractional Poisson processes and related planar random motions. Electronic Journal of Probability 14 (61): 1790–1827.

    Google Scholar 

  • Beghin L., and E. Orsingher. 2010. Poisson-type processes governed by fractional and higher-order recursive differential equations. Electronic Journal of Probability 15 (22): 684–709.

    Google Scholar 

  • Belair, J. 1987. Sur le calcul de la dimension fractale. Ann. Sci. Math 11 (I): 7–13.

    Google Scholar 

  • Ben Avraham, D., and S. Havlin. 2000. Diffusion and reactions in fractals and disordered systems. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Beran, J. 1992. Statistical methods for data with long-range dependence. Statistical Science 7:404427.

    Google Scholar 

  • Bollerslev, T. 1986. Generalized autoregresive conditional heteroskedasticity. Journal of Econometrics 31:307–327.

    Article  Google Scholar 

  • Boltzmann, L. (1878). Zur theorie der elastischen nachwirkung. Annalen der Physik 241 (11): 430–432.

    Article  Google Scholar 

  • Borges E, P., and I. Roditi. September 1998. A family of non-extensive entropies. Physics Letters, A 246:399–402.

    Article  Google Scholar 

  • Bunde A., and S. Havlin. 1991. Fractals and disordered systems. Berlin: Springer.

    Book  Google Scholar 

  • Cahoy, D. O., and F. Polito. 2013. Renewal processes based on generalized Mittag-Leffler waiting times. Communications in Nonlinear Science and Numerical Simulation 18 (3): 639–650.

    Article  Google Scholar 

  • Cahoy, D. O., V. V. Uchaikin, and W. A. Woyczynski. 2010. Parameter estimation for fractional Poisson processes. Journal of Statistical Planning and Inference 140 (11): 3106–3120.

    Article  Google Scholar 

  • Claes I., and C. Van den Broeck. October 1987. Random walk with persistence. Journal of Statistical Physics 49 (1–2): 383–392.

    Article  Google Scholar 

  • Cont, R., and P. Tankov. 2004. Financial modelling with jump processes. London: Chapman & Hall/CRC.

    Google Scholar 

  • Cresson, J. C., M. A. Alves da Silva, and G. M. Viswanathan. 2007. Amnestically induced persistence in random walks. Physical review letters 98:070603.

    Article  Google Scholar 

  • Daley, D. J. 1999. The Hurst index for a long-range dependent renewal processes. Annals of Probablity 27 (4): 2035–2041.

    Article  Google Scholar 

  • Damien, Campbell. www.cetcapital.com.

  • Duncan, T. E., Y. Hu, and B. Pasik-Duncan. 2000. Stochastic calculus for fractional Brownian motion, I. Theory. SIAM Journal on Control and Optimization 38:582–612.

    Article  Google Scholar 

  • Einstein, A.,1905. On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat. Annalen der Physik 17:549–560.

    Article  Google Scholar 

  • Engle, R. 1987. Autoregressive conditional heteroskedasticity with estimates of the variance of U. K. inflation. Econometrica 50:987–1008.

    Article  Google Scholar 

  • Fama, Eugene. 1963. Mandelbrot and the stable paretian hypothesis. Journal of Business 36 (4): 420–429 (reprinted in Paul Cootner (ed.). 1964. The random character of stock prices. MIT Press).

    Google Scholar 

  • Fama, Eugene. 1965a. The Behavior of stock market prices. Journal of Business 38:34–105.

    Article  Google Scholar 

  • Fama, Eugene. 1965b. Portfolio analysis in a stable Paretian market. Management Science 11:404–419.

    Article  Google Scholar 

  • Fama, Eugene. 1970. Efficient capital markets: A review of theory and empirical work. Journal of Finance 25:383–473.

    Article  Google Scholar 

  • Feller, W.. 1951. The asymptotic distribution of the range of sums of independent random variables. The Annals of Mathematical Statistics 22:427–432.

    Article  Google Scholar 

  • Feller, W. 1957, 1966. An introduction to probability theory and its applications. 1 and 2 Vols. New York: John Wiley and Sons, Inc.

    Google Scholar 

  • Ferguson, A., and M. Z. Bazant. 2005. Lecture 19: poly models: Persistence and self-avoidance, MIT Lecture Notes.

    Google Scholar 

  • Fitouhi, A., et al. 2005. Asymptotic approximations in quantum calculus. Journal of Nonlinear Mathematical Physics 12:586–606.

    Article  Google Scholar 

  • Fox, R., and M. S. Taqqu. 1985. Non-central limit theorems for quadratic forms in random variables having long range dependence. The Annals of Probability 13:428–446.

    Article  Google Scholar 

  • Goldstein, S. 1951. On diffusion by discontinuous movements, and on the telegraph equation. The Quarterly Journal of Mechanics and Applied Mathematics 4:129–156.

    Article  Google Scholar 

  • Graf, H. P. 1983. Long-range correlations and estimation of the self-similarity parameter. PhD Diss., ETH, Zurich.

    Google Scholar 

  • Granger, C. W., and J. Joyeux. 1980. An introduction to long memory time series models and fractional differencing. Journal of Time Series Analysis 1 (1): 15–29.

    Article  Google Scholar 

  • Gray, H. L., N. R. Zhang, and W. A. Woodward. 1989. On generalized fractional processes. Journal of Time Series Analysis 10:233–257.

    Article  Google Scholar 

  • Herbin, E., and E. Merzbach. 2006. A set-indexed fractional Brownian motion. Journal of Theoretical Probability 19 (2): 337–364.

    Article  Google Scholar 

  • Herrmann, S. and P. Vallois. 2010. From persistent random walk to the telegraph noise. Stochastics and Dynamics 10 (2): 161–196.

    Article  Google Scholar 

  • Hu, Y., and B. Øksendal. 2003. Fractional white noise calculus and applications to finance. Infinite Dimensiona Analysis, Quantum Probability and Related. Topics 6:1–32.

    Article  Google Scholar 

  • Huillet, T. 2002. Renewal processes and the Hurst effect. Journal of Physics A 35:4395–4413.

    Article  Google Scholar 

  • Hurst, H. E. 1951. Long terms storage of reservoirs. Transactions of the American Society of Civil Engineers 116:770–779.

    Google Scholar 

  • Imhoff, J. P. 1985. On the range of brownian motion and its inverse process. The Annals of Probility 13 (3): 1011–1017.

    Article  Google Scholar 

  • Imhoff, J. P. 1992. A construction of the brownian motion path from BES (3) pieces. Stochastic Processes and Applications 43:345–353

    Article  Google Scholar 

  • Ivanov, G., and E. Merzbach. 2000. Set-indexed Martingales. Chapman & Hall, London.

    Google Scholar 

  • Jackson, F. H. 1910. On a q-definite integrals. Quarterly Journal of Pure and Applied Mathematics 41:193–203.

    Google Scholar 

  • Jain, N.C., and S. Orey. 1968. On the range of random walk. Israel Journal of Mathematics 6:373–380.

    Article  Google Scholar 

  • Jain, N. C., and W. E. Pruitt. 1972. The range of random walk. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability,3 Vols, ed. Lucien Le Cam, Jerzy Neyman, and Elizabeth L. Scott, 31–50. Berkeley: University of California Press.

    Google Scholar 

  • Jumarie, G. 1993. Stochastic differential equations with fractional Brownian motion input. International Journal of Systems Science 6:1113–1132.

    Article  Google Scholar 

  • Jumarie, G. 2004. Fractional Brownian motions via random walk in the complex plane and via fractional derivative. Comparison and further results on their Fokker–Planck equations. Chaos, Solitons & Fractals 4:907–925.

    Article  Google Scholar 

  • Jumarie, G.. 2005. On the representation of fractional Brownian motion as an integral with respect to (dt)a. Applied Mathematics Letters 18:739–748.

    Article  Google Scholar 

  • Jumarie, G. 2005. On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion. Applied Mathematics Letters 18:817–826.

    Article  Google Scholar 

  • Jumarie, G. 2006. Modified Riemann–Liouville derivative and fractional Taylor’s series of non-differentiable functions further results. Computers and Mathematics with Applications 51:1367–1376.

    Article  Google Scholar 

  • Jumarie, Guy. 2008. Stock exchange fractional dynamics defined as a fractional exponential growth driven by (usual) Gaussian white noise. Applications to fractional Black-Scholes equations. Insurance Mathematics and. Economics 42:271–287.

    Article  Google Scholar 

  • Jumarie, Guy. 2010. Fractional multiple birth-death processes with birth probabilities. Journal of the Franklin Institute 347:1797–1813.

    Article  Google Scholar 

  • Jumarie, Guy. 2012a. Deviation of an amplitude of information in the setting of a new family of fractional entropies. Information Sciences 216:113–137.

    Article  Google Scholar 

  • Jumarie, Guy. 2012b. On the fractional solution of the equation f(x + y) = f(x)f(y) and its application to fractional Laplace’s transform. Applied Mathematics and Computation 219:1625–1643.

    Article  Google Scholar 

  • Jumarie, Guy. 2013. Fractional differential calculus for non-differentiable functions. Saarbrücken: Lap Lambert Academic Publishing.

    Google Scholar 

  • Kac, V., and P. Cheung. 2002. Quantum calculus. New York: Springer.

    Book  Google Scholar 

  • Laskin, Nick. 2000. Fractional market dynamics. Physica A 287:482–492.

    Article  Google Scholar 

  • Laskin, N. 2003. Fractional Poisson process. Communications in nonlinear science and numerical simulations 8 (3–4): 201–213.

    Article  Google Scholar 

  • Laskin, N. 2009. Some applications of the fractional Poisson probability distribution. Journal of Mathematical Physics 50:113513. (12 Pages).

    Article  Google Scholar 

  • Laskin, Nick. 2011. Some applications of the fractional poisson probability distribution, arXiv1193v2 [math-ph] 17 No.

    Google Scholar 

  • Leonenko, N., and E. Merzbach. 2013. Fractional Poisson fields. Methodology and Computing in Applied Probability. doi:10.1007/s11009-013-9354-7

    Google Scholar 

  • Leonenko, N. N., M. M. Meerschaert, and A. Sikorskii. 2013a. Fractional Pearson diffusions. Journal of Mathematical Analysis and Applications 403:532–546.

    Article  Google Scholar 

  • Leonenko, N. N., M. M. Meerschaert, and A. Sikorskii. 2013b. Correlation structure of fractional Pearson diffusions. Computers and Mathematics and Applications 66:737–745. doi:10.1016/j.camwa.2013.01.009.

    Article  Google Scholar 

  • Liouville, J. 1832. Sur le calcul des differentielles a indices quelconques. Journal of Ecole Polytechnique 13:71.

    Google Scholar 

  • Mandelbrot, B. B. 1982. The Fractal Geometry of Nature. San Francisco: Freeman.

    Google Scholar 

  • Mandelbrot, B., and M. Taqqu. 1979. Robust R/S analysis of long run serial correlation. Bulletin of the International Statistical Institute 48 (Book 2): 59–104.

    Google Scholar 

  • Mandelbrot, B., and J. Van Ness. 1968. Fractional Brownian motion, fractional noises and applications. SIAM Review 10:422–437.

    Article  Google Scholar 

  • Masoliver, J., J. M. PorrVa, and G. H. Weiss. 1993. Some two and three-dimensional persistent random walks. Physica A: Statistical Mechanics and its Applications 193:469.

    Article  Google Scholar 

  • Masoliver, J., M. Montero, and G. H. Weiss. 2003. Continuous time random walk model for financial distributions. Physics Review E 67:1–9.

    Article  Google Scholar 

  • Masolivera, Jaume, Miquel Monteroa, Josep Perello, and George H. Weiss. 2007. The CTRW in finance: Direct and inverse problems with some generalizations and extensions. Physica A: Statistical Mechanics and its Applications 379:151–167.

    Article  Google Scholar 

  • Miller, G. A. 1956. The magical number 7. The Psychological Review 63:81–97.

    Article  Google Scholar 

  • Miller, K. S., and B. Ross. 1973. An Introduction to the fractional calculus and fractional differential equations. New York: Wiley.

    Google Scholar 

  • Mittag-Leffler, G. M. 1903, 1904, 1905. CR Acad Sci Paris 1903;137(2):554–558; R Acad dei Lincei, Rendiconti 1904;13 (5): 3–5; Acta Math 1905;29:101–182.

    Google Scholar 

  • Montroll, E. W., and G. H. Weiss. 1965. Random walks on lattices, II. Journal of Mathematical Physics 6:167–181.

    Article  Google Scholar 

  • Montroll, E. W., and B. J. West. 1979. On an enriched collection of stochastic processes. In Fluctuation phenomena, ed. E. W. Montroll and J. Leibowitz, 61–175. Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Oldham, K. B., and J. Spanier. 1974. The fractional calculus. New York: Academic Press.

    Google Scholar 

  • Osler, T. J. 1971. Taylor’s series generalized for fractional derivatives and applications. SIAM Journal on Mathematical Anaysis 2 (1): 37–47.

    Article  Google Scholar 

  • Patlak, Clifford.1953. Random walk with persistence and external bias. Bulletin of Mathematical Biology 15 (3): 311–338.

    Google Scholar 

  • Peter Edgar, E. 1995. Chaos and order in capital markets. New York: Wiley.

    Google Scholar 

  • Picinbono, B., and C. Bendjaballah. 2006. Poisson processes with integrable density. IEEE Transactions on Information Theory 52:5606–5613.

    Article  Google Scholar 

  • Pottier, Noelle. 1996. Analytic study of the effect of persistence on a one-dimensional biased random walk. Physica A: Statistical Mechanics and its Applications 230:563–576.

    Article  Google Scholar 

  • Rieger H., and F. Igloi. 1999. Average persistence in random walks. Europhysics Letters 45:673–679.

    Article  Google Scholar 

  • Rostek, S., and R. Schöbel. 2013. A note on the use of fractional Brownian motion for financial modeling. Economic Modelling 30:30–35.

    Article  Google Scholar 

  • Samko, S. G., A. A. Kilbas, and O. I. Marichev. 1987. Fractional integrals and derivatives and their applications (translated by Harwood Academic). Minsk: Nauka I Tekhnika.

    Google Scholar 

  • Samorodnitsky, G., and M. S. Taqqu. 1994. Stable non-gaussian, random processes: Stochastic models with infinite variance, Stochastic Modeling Series. 1 Vols. New York: Chapman & Hall.

    Google Scholar 

  • Scalas, Enrico. 2006. The application of continuous time random walks in finance and economics. Physica A: Statistical Mechanics and its Applications 362:225–239.

    Article  Google Scholar 

  • Tapiero, C. S. 1975. Random walk models of advertising, their diffusion approximations and hypothesis, testing. Annals of Economics and Social Measurement 4:293–309.

    Google Scholar 

  • Tapiero, C. S. 1978. Optimal advertising and goodwill under uncertainty. Operations Research 26 (3): 450–463.

    Article  Google Scholar 

  • Tapiero, C. S. 1979. A Generalization of the Nerlove-Arrow model to multi firms advertising under uncertainty. Management Science 25:907–915.

    Article  Google Scholar 

  • Tapiero, C. S. 1982. Stochastic model of consumer behavior and optimal advertising. Management Science 28:1054–1064.

    Article  Google Scholar 

  • Tapiero, C. S. 1983. Stochastic diffusion models with advertising and word-of-mouth effects. European Journal of Operational Research 12 (4): 348–356.

    Article  Google Scholar 

  • Tapiero, C. S. 1988. Applied stochastic models and control in management. New York: North Holland.

    Google Scholar 

  • Tapiero, C. S. 2004. Risk and financial management: Mathematical and computational methods. London: Wiley.

    Book  Google Scholar 

  • Tapiero, C. S. 2005. Advertising and advertising claims over time. In Optimal control and dynamic games, applications finance, management science and economics, ed. C. Deissenberg and R. F. Hartl. Springer, Berlin, New York.

    Google Scholar 

  • Tapiero, C. S. 2010. Risk finance and assets pricing. New York: Wiley.

    Book  Google Scholar 

  • Tapiero, C. S. 2012a. Engineering risk and finance. New York: Springer.

    Google Scholar 

  • Tapiero, Oren. 2012b. Finance and incomplete state preferences uncertainty: Measurement and implications. Israel: Doctoral Dissertation, Bar Ilan University.

    Google Scholar 

  • Tapiero, Oren. 2013a. Financial decisions and q-calculus. Risk and Decision Analysis 4 (4): 291–301

    Google Scholar 

  • Tapiero, Oren. 2013b. The economics of uncertainty. In Engineering risks and finance, ed. C. S. Tapiero. Springer, New York.

    Google Scholar 

  • Tapiero, Oren. 2013c. A maximum (non-extensive) entropy approach to equity options bid-ask spread. Physica A: Statistical Mechanics and its Applications 392:3051–3060.

    Article  Google Scholar 

  • Tapiero, Oren. 2013d. The relationship between risk and incomplete states uncertainty: A Tsallis entropy perspective. Journal of Algorithmic Finance 2:141–150.

    Google Scholar 

  • Tapiero, C. S., and P. Vallois. 1996. Run length statistics and the Hurst exponent in random and birth-death random walks. Chaos, Solitons and Fractals 7 (9):1333–1341.

    Article  Google Scholar 

  • Taqqu, M. S. 1986. A bibliographical guide of self-similar processes and long-range dependence. In Dependence in probability and statistics: A survey of recent results, ed. Ernst Eberlein and Murad S. Taqqu. Basel: Birkhauser.

    Google Scholar 

  • Taqqu, M. S. 2003. Fractional Brownian motion and long-range dependence. In Theory and applications of long-range dependence, Birkhäuser, ed. P. Doukhan, G. Oppenheim, and M. S. Taqqu, 5–38. Boston: Springer.

    Google Scholar 

  • Telesca, L., and M. Lovallo. 2006. Are global terrorist attacks time correlated. Physica A: Statistical Mechanics and its Applications 362:480–484.

    Article  Google Scholar 

  • Tsallis, C. 1988. Possible generalization of Boltzmann—Gibbs statistics. Journal of Statistical Physics 52 (1): 479–487.

    Article  Google Scholar 

  • Tsallis, C. 2009. Nonadditive entropy and nonextensive statisticsal mechanics-an over view after 20 years. Brazilian Journal of Physics 39:337–356.

    Article  Google Scholar 

  • Tsallis, C., C. Anteneodo, L. Borland, and R. Osorio. 2003. Nonextensive statistical mechanics and economics. Physica A: Statistical Mechanics and its Applications 324 (1–2): 89–100.

    Article  Google Scholar 

  • Vallois, P. 1993. Diffusion arrêtée au premier instant où le processus de l’amplitude atteint un niveau donné. Stochastics and Stochastic Reports 43:93–115.

    Article  Google Scholar 

  • Vallois, P. 1995. On the range process of a Bernoulli random walk. In Proceedings of the sixth international symposium on applied stochastic models and data analysis. II Vols., ed., J. Janssen and C.H. Skiadas, 1020–1031. World Scientific.

    Google Scholar 

  • Vallois, P. 1996. The range of a simple random walk on Z. Advances in Applied Probability 28:1014–1033.

    Article  Google Scholar 

  • Vallois P., and C. S. Tapiero. 1995. Moments of an amplitude process in a random walk. Recherche Operationnelle/Operation Research (RAIRO) 29 (1): 1–17.

    Google Scholar 

  • Vallois P., and C. S. Tapiero. 1996. The range process in random walks: Theoretical results and applications. In Advances in computational economics, ed. H. Ammans, B. Rustem, and A. Whinston. Springer, Berlin.

    Google Scholar 

  • Vallois P., and C. S. Tapiero. 1997. Range reliability in random walks. Mathematics of Operations Research 45 (3): 325–345. (Zeitchrifts fur Operations Research).

    Article  Google Scholar 

  • Vallois P., and C. S. Tapiero. 2007. Memory-based persistence in a counting random walk process. Physica A: Statistical Mechanics and its Applications 386:303–317.

    Article  Google Scholar 

  • Vallois P., and C. S. Tapiero. 2008. A claims persistence process and insurance. Insurance: Economics and Mathematics 44:367–373.

    Google Scholar 

  • Viano, M. C., C. Deniau, and G. Oppenheim. 1994. Continuous time fractional ARMA processes. Statistics and Probability Letters 21:323–336.

    Article  Google Scholar 

  • Viswanathan, G. M., S. V. Buldyrev, S. Havlin, M. G. E. da Luz, E. Reposo, and H. E. Stanley. 1999. Optimizing the success of random searches. Nature 401:911–914.

    Article  Google Scholar 

  • Wang, X. T., and Z.-X. Wen. 2003. Poisson fractional processes. Chaos Solitons and Fractals 18 (1): 169–177.

    Article  Google Scholar 

  • Wang, X. T., Z.-X. Wen, and S.-Y. Zhang. 2006. Fractional Poisson process II. Chaos, Solitons & Fractals 28 (1): 143–147.

    Article  Google Scholar 

  • Wang, X. T., S.-Y. Zhang, and S. Fan. 2007. Nonhomogeneous fractional Poisson processes. Chaos, Solitons & Fractals 31 (1): 236–241.

    Article  Google Scholar 

  • Weiss, G. H. 1994. Aspects and applications of the random walk. Amsterdam: North-Holland.

    Google Scholar 

  • Weiss, G. H. 2002. Some applications of persistent random walks and the telegrapher’s equation. Physica A: Statistical Mechanics and its Applications 311:381–410.

    Article  Google Scholar 

  • Weiss, G. H., and R. J. Rubin. 1983. Random walks: Theory and selected applications. Advances in Chemical Physics 52:363–505.

    Google Scholar 

  • Willinger, W., and V. Paxson. 1998. Where mathematics meets the internet. Notices of the AMS 45:961–970.

    Google Scholar 

  • Wolpert, R. L., and M. S. Taqqu. 2005. Fractional Ornstein-Uhlenbeck Levy processes and the Telecom process: Upstairs and downstrais. Signal Processing 85:1523–1545.

    Article  Google Scholar 

  • Wu, H., B. L. Li, T. A. Springer, and W. H. Neil. 2000. Modelling animal movement as a persistent random walk in two dimensions: expected magnitude of net displacement. Ecological Modelling 132:115.

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to G. Jumarie (University of Quebec in Montreal), to O. Tapiero (University of Paris I-Pantheon Sorbonne) and to S. Herrmann for the right they gave us to reproduce some of their results in this papers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles S. Tapiero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tapiero, C., Vallois, P. (2015). Financial Modelling and Memory: Mathematical System. In: Bensoussan, A., Guegan, D., Tapiero, C. (eds) Future Perspectives in Risk Models and Finance. International Series in Operations Research & Management Science, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-07524-2_6

Download citation

Publish with us

Policies and ethics