Semi-automated Quantification of Fibrous Cap Thickness in Intracoronary Optical Coherence Tomography

  • Guillaume Zahnd
  • Antonios Karanasos
  • Gijs van Soest
  • Evelyn Regar
  • Wiro J. Niessen
  • Frank Gijsen
  • Theo van Walsum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8498)


Acute coronary syndrome represents a leading cause of death. Events are triggered by rupture of atheromatic plaques, as a result of disruption of the overlying fibrous cap. Pathological studies have shown that cap thickness is a critical component of plaque stability. Therefore, assessment of fibrous cap thickness could be a valuable tool for estimating the risk of future events. To aid preoperative planning and peri-operative decision making, intracoronary optical coherence tomography imaging can provide very detailed information about arterial wall structure. However, manual interpretation of the images is laborious, subject to variability, and therefore not always sufficiently reliable for immediate decision of treatment. We present a novel semi-automatic computerized interventional imaging tool to quantify coronary fibrous cap thickness in optical coherence tomography. The most challenging issue when estimating cap thickness is caused by the diffuse nature of the anatomical abluminal interface to be detected. Our method can successfully extract the fibrous cap contours using a robust dynamic programming framework based on a geometrical a priori. Validated on a dataset of 90 images from 11 patients, our method provided a good agreement for minimum cap thickness with the reference tracings performed by a medical expert (35.7 ±33.3 μm, R=.68) and was similar to inter-observer reproducibility (35.2 ±33.1 μm, R=.66), while being significantly faster and fully reproducible. This tool demonstrated promising performances and could potentially be used for online identification of high risk-plaques.


Coronary artery Optical coherence tomography Interventional imaging Thin-cap fibroatheroma Contour segmentation Dynamic programming Preoperative planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    World Health Organisation: Cardiovascular diseases (CVDs). Fact Sheet 317 (March 2013)Google Scholar
  2. 2.
    Virmani, R., Kolodgie, F.D., Burke, A.P., Farb, A., Schwartz, S.M.: Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20(5), 1262–1275 (2000)CrossRefGoogle Scholar
  3. 3.
    Burke, A.P., Farb, A., Malcom, G.T., Liang, Y.H., Smialek, J., Virmani, R.: Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Engl. J. Med. 336, 1276–1282 (1997)CrossRefGoogle Scholar
  4. 4.
    Narula, J., Nakano, M., Virmani, R., et al.: Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J. Am. Coll. Card. 61(10), 1041–1051 (2013)CrossRefGoogle Scholar
  5. 5.
    Brezinski, M.E.: Optical coherence tomography for identifying unstable coronary plaque. Int. J. Cardiol. 107(2), 154–165 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kume, T., Akasaka, T., Kawamoto, T., et al.: Measurement of the thickness of the fibrous cap by optical coherence tomography. Am. Heart. J. 152(4), 755e1–755e4 (2006)Google Scholar
  7. 7.
    Kubo, T., Imanishi, T., Takarada, S., et al.: Assessment of culprit lesion morphology in acute myocardial infarction: Ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Card. 50(10), 933–939 (2007)CrossRefGoogle Scholar
  8. 8.
    Bezerra, H.G., Costa, M.A., Guagliumi, G., Rollins, A.M., Simon, D.I.: Intracoronary optical coherence tomography: a comprehensive review. J. Am. Coll. Cardiol. Intv. 2(11), 1035–1046 (2009)CrossRefGoogle Scholar
  9. 9.
    Tearney, G.J., Regar, E., Akasaka, T., et al.: Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies. J. Am. Coll. Card. 59(12), 1058–1072 (2012)CrossRefGoogle Scholar
  10. 10.
    Xu, C., Schmitt, J.M., Carlier, S.G., Virmani, R.: Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography. J. Biomed. Opt. 3, 34003 (2008)CrossRefGoogle Scholar
  11. 11.
    van Soest, G., Goderie, T., Regar, E., et al.: Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J. Biomed. Opt. 15(1), 011105-1–011105-9 (2010)Google Scholar
  12. 12.
    Ughi, G.J., Steigerwald, K., Adriaenssens, T., et al.: Automatic characterization of neointimal tissue by intravascular optical coherence tomography. J. Biomed. Opt. 19(2), 021104 (2013)Google Scholar
  13. 13.
    Wang, Z., Chamie, D., Bezerra, H.G., et al.: Volumetric quantification of fibrous caps using intravascular optical coherence tomography. Biomed. Opt. Express 3(6), 1413–1426 (2012)CrossRefGoogle Scholar
  14. 14.
    Zahnd, G., Orkisz, M., Sérusclat, A., Moulin, P., Vray, D.: Simultaneous extraction of carotid artery intima-media interfaces in ultrasound images: assessment of wall thickness temporal variation during the cardiac cycle. Int. J. CARS (2013) (in press), doi:10.1007/s11548-013-0945-0Google Scholar
  15. 15.
    Dietenbeck, T., Alessandrini, M., Friboulet, D., Bernard, O.: CREASEG: a free software for the evaluation of image segmentation algorithms based on level-set. In: IEEE ICIP, pp. 665–668 (2010)Google Scholar
  16. 16.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)CrossRefzbMATHGoogle Scholar
  17. 17.
    Cohen, L.: Minimal paths and fast marching methods for image analysis. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 97–111. Springer, US (2006)CrossRefGoogle Scholar
  18. 18.
    Stone, G.W., Maehara, A., Lansky, A.J.: A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364(3), 226–235 (2011)CrossRefGoogle Scholar
  19. 19.
    Toutouzas, K., Karanasos, A., Tsiamis, E., et al.: New insights by optical coherence tomography into the differences and similarities of culprit ruptured plaque morphology in non–ST-elevation myocardial infarction and ST-elevation myocardial infarction. Am. Heart J. 161(6), 1192–1199 (2011)CrossRefGoogle Scholar
  20. 20.
    Yonetsu, T., Kakuta, T., Lee, T., et al.: In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur. Heart J. 32(10), 1251–1259 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Guillaume Zahnd
    • 1
  • Antonios Karanasos
    • 2
  • Gijs van Soest
    • 3
  • Evelyn Regar
    • 2
  • Wiro J. Niessen
    • 1
  • Frank Gijsen
    • 3
  • Theo van Walsum
    • 1
  1. 1.Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical InformaticsErasmus Medical CenterRotterdamThe Netherlands
  2. 2.Department of Interventional Cardiology, Thorax CenterErasmus MCRotterdamThe Netherlands
  3. 3.Department of Biomedical EngineeringErasmus MCRotterdamThe Netherlands

Personalised recommendations