Skip to main content

Exploiting SIMD and Thread-Level Parallelism in Multiblock CFD

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8488))

Abstract

This paper presents the on-node performance tuning of a multi-block Euler solver for turbomachinery computations.

Our work focuses on vertical and horizontal scaling within an x86 multi-socket compute node by exploiting the fine grained parallelism available through SIMD instructions at core level and thread-level parallelism across the die through shared memory. We report on the challenges encountered in enabling efficient vectorization using both compiler directives and intrinsics with an emphasis on data structure transformations and their performance impact on vector computations.

Finally, we present the solver performance on different grid sizes running on Intel Sandy Bridge and Ivy Bridge processors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Williams, S., Oliker, L., Carter, J., Shalf, J.: Extracting ultra-scale lattice boltzmann performance via hierarchical and distributed auto-tuning. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2011, pp. 55:1–55:12. ACM, New York (2011)

    Google Scholar 

  2. Pennycook, S.J., Hughes, C.J., Smelyanskiy, M., Jarvis, S.: Exploring simd for molecular dynamics, using intel xeon processors and intel xeon phi coprocessors. In: Parallel and Distributed Processing Symposium, International, pp. 1085–1097 (2013)

    Google Scholar 

  3. Smith, M.R., Liu, J.Y., Kuo, F.A., Wu, J.S.: Hybrid openmp/avx acceleration of a higher order quiet direct simulation method for the euler equations. Procedia Engineering 61, 152–157 (2013), 25th International Conference on Parallel Computational Fluid Dynamics

    Google Scholar 

  4. Abel, J., Balasubramanian, K., Bargeron, M., Craver, T., Phlipot, M.: Application tuning for streaming simd extensions. Intel Technology Journal, 1–12 (2009)

    Google Scholar 

  5. Gepner, P., Gamayunov, V., Fraser, D.L.: Early performance evaluation of avx for hpc. Procedia Computer Science 4, 452–460 (2011), Proceedings of the International Conference on Computational Science, ICCS 2011

    Google Scholar 

  6. Piazza, T., Jiang, H., Hammarlund, P., Singhal, R.: Technology insight: Intel(r) next generation microarchitecture code name haswell. Technical report, Intel Corporation (2012)

    Google Scholar 

  7. Zone, I.D.: Intel(r) xeon phi, http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-vector-microarchitecture (accessed January 3, 2014)

  8. Zone, I.D.: Avx-512 instructions, http://software.intel.com/en-us/blogs/2013/avx-512-instructions (accessed April 3, 2014)

  9. Henretty, T., Stock, K., Pouchet, L.-N., Franchetti, F., Ramanujam, J., Sadayappan, P.: Data layout transformation for stencil computations on short-vector SIMD architectures. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 225–245. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Wang, Y., Baboulin, M., Dongarra, J., Falcou, J., Fraigneau, Y., Maître, O.L.: A parallel solver for incompressible fluid flows. Procedia Computer Science 18, 439–448 (2013)

    Google Scholar 

  11. Vavra, M.: Aero-Thermodynamics and Flow in Turbomachines. John Wiley, Los Alamitos (1960)

    Google Scholar 

  12. Albada, G., Leer, B., Roberts Jr., W.W.: A comparative study of computational methods in cosmic gas dynamics. In: Hussaini, M., Leer, B., Rosendale, J. (eds.) Upwind and High-Resolution Schemes, pp. 95–103. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  13. Roe, P.: Approximate riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics 43(2), 357–372 (1981)

    Article  MathSciNet  Google Scholar 

  14. Grasso, F., Meola, C.: Handbook of Computational Fluid Mechanics. Academic Press, London (1996)

    Google Scholar 

  15. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual performance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

    Article  Google Scholar 

  16. Treibig, J., Hager, G.: Introducing a performance model for bandwidth-limited loop kernels. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009, Part I. LNCS, vol. 6067, pp. 615–624. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hadade, I., di Mare, L. (2014). Exploiting SIMD and Thread-Level Parallelism in Multiblock CFD. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds) Supercomputing. ISC 2014. Lecture Notes in Computer Science, vol 8488. Springer, Cham. https://doi.org/10.1007/978-3-319-07518-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07518-1_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07517-4

  • Online ISBN: 978-3-319-07518-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics