Skip to main content

Walking Speed in VR Maze while Central Visual Fields Are Restricted with Synchronously Moving Black Circles

Functions of Central Visual Field in Walking through VR Space

  • Conference paper
  • 2428 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8532)

Abstract

We examined the function of the central visual field by using the newly developed VR system that was consisted with a wide-view HMD and an eye-tracker for restricting an arbitrary area of human visual field. Subjects were asked to walk through short virtual mazes under different visual condition in which 10 or 20 degree of their central visual field was restricted artificially with the system. Results indicated 1) Times for walking through the entire maze under the visual condition with 10 degrees of the central visual field restricted in synchronization were longer than times under the condition in which 10 degrees of the fixed central area of screen were restricted. 2) For walking through the area with two dead ends, walking times under the condition in which 20 degrees of the central visual field were restricted were longer than under the condition in which 10 degrees of the central visual field were restricted.

Keywords

  • Applied cognitive psychology
  • Cognitive task analysis
  • Human Centered Design to reduce through life costs
  • Human Factors / System Integration
  • Human Factors certification and regulation
  • Safety
  • Simulation

References

  1. Anstis, S.M.: A chart demonstrarin variations in acuity with retinal position. Vision Research 14, 589–592 (1974)

    CrossRef  Google Scholar 

  2. Brown, B.: Resolution thresholds for moving target at the fovea and in the peripheral retina. Vision Research 12, 293–304 (1972)

    CrossRef  Google Scholar 

  3. Committee on Colorimetry, Optical Society of America (1963)

    Google Scholar 

  4. Dolezal, H.: Living in a world transformed: perceptual and performatory adaptation to visual distortion. Academic Press Proceedings Series 26, 161–184 (1982)

    Google Scholar 

  5. Ikeda, M., Saida, S.: Span of recognition in reading. Vision Research 18(10), 83–88 (1978)

    CrossRef  Google Scholar 

  6. Ikeda, M., Takeuchi, T.: Influence of foveal load on the functional visual field. Perception & Psycholophysis 18, 255–260 (1975)

    CrossRef  Google Scholar 

  7. Johansson, G.: “Visual Perception of locomotion elicited and controlled by a bright spot moving in the periphery of the visual field” Report #210 Department of Psychology Uppsala University (1977)

    Google Scholar 

  8. Kundel, H.L., Nodine, C.F., Toto, L.: Eye movements and the detection of lung tumors in chest images. In: Gale, A.G., Johnson, F. (eds.) Theoretical and Applied Aspects of Eye Movement Research, pp. 297–304. Elsevier Science, New York (1984)

    Google Scholar 

  9. Kuroiwa, M., Okazaki, S., Yoshioka, Y.: Comparison of visual behaviors within a normal visual field and a restricted visual field: navigating a corridor and staircase. The Japanese Journal of Ergonomics 37(1), 29–40 (2001)

    CrossRef  Google Scholar 

  10. Livingstone, M., Hubel, D.: Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240, 740–749 (1988)

    CrossRef  Google Scholar 

  11. Low, F.N.: The peripheral visual acuity of 100 subjects. American Journal of Psychology 146, 573–584 (1946)

    Google Scholar 

  12. Mateef, S., Gourevich, A.: Peripheral vision and perceived visual direction. Biological Cybernetics 49, 111–118 (1983)

    CrossRef  Google Scholar 

  13. McConkie, G., Zola, D., Wolverton, G.: Time course of visual information utilization during fixations in reading. Journal of Experimental Psychology. Human Perception and Performance 10, 75–89 (1984)

    CrossRef  Google Scholar 

  14. Maunsell, J.H.R., Newsome, W.T.: Visual processing in monkey extrastriate cortex. Annual Review of Neuroscience 10, 363–401 (1987)

    CrossRef  Google Scholar 

  15. Osaka, N.: Peripheral lower visual field: a neglected factor? Behav. & Brain Sciences 13, 555 (1990)

    CrossRef  Google Scholar 

  16. Paap, K.R., Newsome, S.L., McDonald, J.E., Schvaneveldt, R.W.: “An activation-verification model for letter and word recognition” The word-superiority effect. Psychological Review 89, 573–594 (1982)

    CrossRef  Google Scholar 

  17. Polyak, S.L.: The retina. University of Chicago Press, Chicago (1941)

    Google Scholar 

  18. Previc, F.: Functional Specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. Behav. & Brain Sciences 13, 519–575 (1990)

    CrossRef  Google Scholar 

  19. Saida, S., Ikeda, M.: Useful Visual Field Size for Pattern Perception. Perception & Psychophysics 25(2), 119–125 (1979)

    CrossRef  Google Scholar 

  20. Skrandies, W.: Human contrast sensitivity: Regional retinal differences. Human Neurobiology 4, 97–99 (1985)

    Google Scholar 

  21. Ungerleider, L.G., Minshkin, M.: Two cortical visual systems. In: Ingle, D.J., Goodale, M.A. (eds.) Analysis of Visual Behavior. MIT Press (1982)

    Google Scholar 

  22. Warren, R.: The perception of ego motion. Journal of Experimental Psychology Human Perception and Performance 2, 448–456 (1976)

    CrossRef  Google Scholar 

  23. Wertheim, T.: Über die indirekte Sehschärfe. Zeitschrift für Psychologie und Physiologie der Sinnesorgane (Leipzig) 7, 172–187 (1894)

    Google Scholar 

  24. Woodhouse, J.M., Barlow, H.B.: Spatial and temporal resolution and analysis. In: Barlow, H.B., Mollon, D.J. (eds.) The Senses. Cambridge University Press, Cambridge (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yoshioka, Y., Ellard, C. (2014). Walking Speed in VR Maze while Central Visual Fields Are Restricted with Synchronously Moving Black Circles. In: Harris, D. (eds) Engineering Psychology and Cognitive Ergonomics. EPCE 2014. Lecture Notes in Computer Science(), vol 8532. Springer, Cham. https://doi.org/10.1007/978-3-319-07515-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07515-0_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07514-3

  • Online ISBN: 978-3-319-07515-0

  • eBook Packages: Computer ScienceComputer Science (R0)