Skip to main content

Multidimensional IRT Models to Analyze Learning Outcomes of Italian Students at the End of Lower Secondary School

  • Conference paper

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 89))

Abstract

In this paper, different multidimensional IRT models are compared in order to choose the best approach to explain response data on Italian student assessment at the end of lower secondary school. The results show that the additive model with three specific dimensions (reading comprehension, grammar, and mathematics abilities) and an overall ability is able to recover the test structure meaningfully. In this model, the overall ability compensates for the specific ability (or vice versa) in order to determine the probability of a correct response. Given the item characteristics, the overall ability is interpreted as a reasoning and thinking capability. Model estimation is conducted via Gibbs sampler within a Bayesian approach, which allows the use of Bayesian model comparison techniques such as posterior predictive model checking for model comparison and fit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert JH (1992) Bayesian estimation of normal ogive item response curves using Gibbs sampling. J Educ Stat 17:251–269

    Article  Google Scholar 

  • Bafumi J, Gelman A, Park DK, Kaplan N (2005) Practical issues in implementing and understanding Bayesian ideal point estimation. Polit Anal 13:171–187

    Article  Google Scholar 

  • Béguin AA, Glas CAW (2001) MCMC estimation and some model-fit analysis of multidimensional IRT models. Psychometrika 66:541–562

    Article  MATH  MathSciNet  Google Scholar 

  • Chen FF, West SG, Sousa KH (2006) A comparison of bifactor and second-order models of quality of life. Multivar Behav Res 41(2):189–225

    Article  Google Scholar 

  • Cowles MK, Carlin BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91:883–904

    Article  MATH  MathSciNet  Google Scholar 

  • de la Torre J, Patz RJ (2005) Making the most of what we have: a practical application of multidimensional item response theory in test scoring. J Educ Behav Stat 30(3):295–311

    Article  Google Scholar 

  • de la Torre J, Song H (2009) Simultaneous estimation of overall and domain abilities: a higher-order IRT model approach. Appl Psychol Meas 33:620–639

    Article  Google Scholar 

  • Edwards MC (2010) A Markov chain Monte Carlo approach to confirmatory item factor analysis. Psychometrika 75:474–497

    Article  MATH  MathSciNet  Google Scholar 

  • Fox JP, Glas CAW (2001) Bayesian estimation of a multilevel IRT model using Gibbs sampling. Psychometrika 66:271–288

    Article  MATH  MathSciNet  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  • Gibbons RD, Hedeker DR (1992) Full-information item bi-factor analysis. Psychometrika 57:423–436

    Article  MATH  Google Scholar 

  • Grek S (2009) Governing by numbers: the PISA effect in Europe. J Educ Policy 24(1):23–37

    Article  Google Scholar 

  • Hartig J, Hohler J (2009) Multidimensional IRT models for the assessment of competencies. Stud Educ Eval 35:57–63

    Article  Google Scholar 

  • Holzinger KJ, Swineford F (1937) The bi-factor method. Psychometrika 2:41–54

    Article  Google Scholar 

  • Huang HY, Wang WC, Chen PH, Su CM (2013) Higher-order item response models for hierarchical latent traits. Appl Psychol Meas 37(8):619–637

    Google Scholar 

  • Koeppen K, Hartig J, Klieme E, Leutner D (2008) Current issues in competence modeling and assessment. J Psychol 216(2):61–73

    Google Scholar 

  • Lord FM, Novick MR (1968) Statistical theories of mental test scores. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Reckase M (2009) Multidimensional item response theory. Springer, New York

    Book  Google Scholar 

  • Reise SP, Moore TN, Haviland MG (2010) Bi-factor models and rotations: exploring the extent to which multidimensional data yield univocal scale scores. J Pers Assess 92(6):544–559

    Article  Google Scholar 

  • Sahu SK (2002) Bayesian estimation and model choice in item response models. J Stat Comput Simulat 72:217–232

    Article  MATH  MathSciNet  Google Scholar 

  • Schmid J, Leiman JM (1957) The development of hierarchical factor solutions. Psychometrika 22:53–61

    Article  MATH  Google Scholar 

  • Sheng Y (2008a) Markov chain Monte Carlo estimation of normal ogive IRT models in MATLAB. J Stat Softw 25(8):1–15

    Google Scholar 

  • Sheng Y (2008b) A MATLAB package for Markov chain Monte Carlo with a multi-unidimensional IRT model. J Stat Soft 28(10):1–20

    Google Scholar 

  • Sheng Y (2010) Bayesian estimation of MIRT models with general and specific latent traits in MATLAB. J Stat Soft 34(10):1–27

    Google Scholar 

  • Sheng Y, Wikle C (2007) Comparing multiunidimensional and unidimensional item response theory models. Educ Psychol Meas 67(6):899–919

    Article  MathSciNet  Google Scholar 

  • Sheng Y, Wikle C (2008) Bayesian multidimensional IRT models with an hierarchical structure. Educ Psychol Meas 68(3):413–430

    Article  MathSciNet  Google Scholar 

  • Sheng Y, Wikle C (2009) Bayesian IRT models incorporating general and specific abilities. Behaviormetrika 36(1):27–48

    Article  MATH  MathSciNet  Google Scholar 

  • Sinharay S, Stern HS (2003) Posterior predictive model checking in hierarchical models. J Stat Plan Inf 111:209–221

    Article  MATH  MathSciNet  Google Scholar 

  • Sinharay S, Johnson MS, Stern HS (2006) Posterior predictive assessment of item response theory models. Appl Psychol Meas 30:298–321

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter D, Best N, Carlin B, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc: Ser B 64:583–640

    Article  MATH  Google Scholar 

  • van der Linden WJ, Hambleton RK (1997) Handbook of modern item response theory. Springer, New York

    MATH  Google Scholar 

  • Wang W-C, Chen P-H, Cheng Y-Y (2004) Improving measurement precision of test batteries using multidimensional item response models. Psychol Methods 9:116–136

    Article  Google Scholar 

  • Wang W-C, Yao G, Tsai Y-J, Wang J-D, Hsieh C-L (2006) Validating, improving reliability, and estimating correlation of the four subscales in the WHOQOL-BREF using multidimensional Rasch analysis. Qual Life Res 15:607–620

    Article  Google Scholar 

  • Yung YF, Thissen D, McLeod LD (1999) On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika 64:113–128

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research has been partially funded by the Italian Ministry of Education with the FIRB (“Futuro in ricerca”) 2012 project on “Mixture and latent variable models for causal-inference and analysis of socio-economic data.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariagiulia Matteucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Matteucci, M., Mignani, S. (2015). Multidimensional IRT Models to Analyze Learning Outcomes of Italian Students at the End of Lower Secondary School. In: Millsap, R., Bolt, D., van der Ark, L., Wang, WC. (eds) Quantitative Psychology Research. Springer Proceedings in Mathematics & Statistics, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-319-07503-7_6

Download citation

Publish with us

Policies and ethics