Skip to main content

Cell Mapping Techniques for Exploratory Landscape Analysis

  • Conference paper

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 288)

Abstract

Exploratory Landscape Analysis is an effective and sophisticated approach to characterize the properties of continuous optimization problems. The overall aim is to exploit this knowledge to give recommendations of the individually best suited algorithm for unseen optimization problems. Recent research revealed a high potential of this methodology in this respect based on a set of well-defined, computable features which only requires a quite small sample of function evaluations. In this paper, new features based on the cell mapping concept are introduced and shown to improve the existing feature set in terms of predicting expert-designed high-level properties, such as the degree of multimodality or the global structure, for 2-dimensional single objective optimization problems.

Keywords

  • exploratory landscape analysis
  • cell mapping
  • black-box optimization
  • continuous optimization
  • single objective optimization
  • algorithm selection

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07494-8_9
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-07494-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. SCI, vol. 54. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  2. Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M.: Experimental methods for the analysis of optimization algorithms. Springer (2010)

    Google Scholar 

  3. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of nk landscapes’ basins and local optima networks. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO 2008, pp. 555–562. ACM, New York (2008)

    Google Scholar 

  4. Mersmann, O., Preuss, M., Trautmann, H., Bischl, B., Weihs, C.: Analyzing the BBOB Results by Means of Benchmarking Concepts. Evolutionary Computation Journal (accepted for publication, 2014)

    Google Scholar 

  5. Mersmann, O., Trautmann, H., Naujoks, B., Weihs, C.: Benchmarking evolutionary multiobjective optimization algorithms. In: Ishibuchi, H., et al. (eds.) IEEE Congress on Evolutionary Computation (CEC), pp. 1311–1318. IEEE Press, Piscataway (2010)

    Google Scholar 

  6. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA (2010)

    Google Scholar 

  7. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 829–836. ACM, New York (2011)

    Google Scholar 

  8. Bischl, B., Mersmann, O., Trautmann, H., Preuss, M.: Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO 2012, pp. 313–320. ACM, New York (2012)

    Google Scholar 

  9. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: A meta-learning prediction model of algorithm performance for continuous optimization problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 226–235. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  10. Abell, T., Malitsky, Y., Tierney, K.: Features for exploiting black-box optimization problem structure. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 30–36. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  11. Morgan, R., Gallagher, M.: Length scale for characterising continuous optimization problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 407–416. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  12. Morgan, R., Gallagher, M.: Using landscape topology to compare continuous metaheuristics: A framework and case study on edas and ridge structure. Evol. Comput. 20(2), 277–299 (2012)

    CrossRef  Google Scholar 

  13. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: Landscape characterization of numerical optimization problems using biased scattered data. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)

    Google Scholar 

  14. Hsu, C.S.: Cell-to-cell mapping: A method of global analysis for nonlinear systems. Applied mathematical sciences. Springer (1987)

    Google Scholar 

  15. Hsu, C.S.: A discrete method of optimal control based upon the cell state space concept. Journal of Optimization Theory and Applications 46(4), 547–569 (1985)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Bursal, F.H., Hsu, C.S.: Application of a cell-mapping method to optimal control problems. International Journal of Control 49(5), 1505–1522 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Crespo, L.G., Sun, J.Q.: Stochastic Optimal Control of Nonlinear Dynamic Systems via Bellman’s Principle and Cell Mapping. Automatica 39(12), 2109–2114 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Hernández, C., Naranjani, Y., Sardahi, Y., Liang, W., Schütze, O., Sun, J.-Q.: Simple Cell Mapping Method for Multi-objective Optimal Feedback Control Design. International Journal of Dynamics and Control 1(3), 231–238 (2013)

    CrossRef  Google Scholar 

  19. Kemeny, J., Snell, J.: Finite Markov Chains: With a New Appendix ”Generalization of a Fundamental Matrix”. Undergraduate Texts in Mathematics. Springer (1976)

    Google Scholar 

  20. Mersmann, O., Preuss, M., Trautmann, H.: Benchmarking evolutionary algorithms: Towards exploratory landscape analysis. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 73–82. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  21. Jägersküpper, J., Preuß, M.: Empirical investigation of simplified step-size control in metaheuristics with a view to theory. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 263–274. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  22. MATLAB: version 8.2.0.701 (R2013b). The MathWorks Inc., Natick, Massachusetts (2013)

    Google Scholar 

  23. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013)

    Google Scholar 

  24. Bischl, B.: mlr: Machine Learning in R. R package version 1.2

    Google Scholar 

  25. Bischl, B., Mersmann, O., Trautmann, H., Weihs, C.: Resampling methods in model validation. Evolutionary Computation Journal 20(2), 249–275 (2012)

    CrossRef  Google Scholar 

  26. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Kerschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kerschke, P. et al. (2014). Cell Mapping Techniques for Exploratory Landscape Analysis. In: , et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V. Advances in Intelligent Systems and Computing, vol 288. Springer, Cham. https://doi.org/10.1007/978-3-319-07494-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07494-8_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07493-1

  • Online ISBN: 978-3-319-07494-8

  • eBook Packages: EngineeringEngineering (R0)