Application of Cognitive Techniques to Network Management and Control

  • Sławomir Kukliński
  • Jacek Wytrębowicz
  • Khoa Truong Dinh
  • Emilia Tantar
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 288)

Abstract

This paper describes the latest communications technologies emphasizing the need of dynamic network control and real-time management operations. It is advocated that many such operations can profit from cognitive learning based techniques that could drive many management or control operations. In that context a short overview of selected networking approaches like 3GPP Self Organizing Networks, Autonomic Network Management and Software-Defined Networking, with some references to existing cognitive approaches is given.

Keywords

machine learning SON LTE SDN autonomic network management artificial intelligence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An architectural blueprint for autonomic computing. Tech. rep., IBM (June 2005)Google Scholar
  2. 2.
    Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)Google Scholar
  3. 3.
    Agoulmine, N.: Autonomic Network Management Principles: From Concepts to Applications. Elsevier Science (2010)Google Scholar
  4. 4.
    Altman, E., Dini, P., Miorandi, D.: Paradigms for biologically- inspired autonomic networks and services the bionets project ebook. eBook (BIONETS project EU-IST-FET-SAC-FP6-027748 project deliverable D0.2.3 (2010), www.bionets.eu
  5. 5.
    Atlas, A., Nadeau, T., Ward, D.: Interface to the Routing System Framework. draft-ward-irs-framework-00 (July 2012), http://tools.ietf.org/html/draft-ward-irs-framework-00
  6. 6.
    Autonomic Internet Project, http://ist-autoi.eu/
  7. 7.
    Bäck, T., Fogel, D., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Institute of Physics Publishing Ltd., Bristol and Oxford University Press, New York (1997)Google Scholar
  8. 8.
    Beyer, H.G., Schwefel, H.P.: Evolution strategies - a comprehensive introduction. Natural Computing 1(1), 3–52 (2002)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
  10. 10.
    Cabaj, K.: Frequent events and epochs in data stream. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 475–484. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Chaparadza, R.: Requirements for a generic autonomic network architecture (gana), suitable for standardizable autonomic behavior specifications for diverse networking environments. Annual Review of Communications 61 (2008)Google Scholar
  12. 12.
    Coello Coello, C.A.: List of references on evolutionary multiobjective optimization (1999), http://www.lania.mx/~ccoello/EMOO/EMOObib.html
  13. 13.
  14. 14.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATHGoogle Scholar
  15. 15.
  16. 16.
    Del Moral, P., Tantar, A.-A., Tantar, E.: On the foundations and the applications of evolutionary computing. In: Tantar, E., Tantar, A.-A., Bouvry, P., Del Moral, P., Legrand, P., Coello Coello, C.A., Schütze, O. (eds.) EVOLVE- A bridge between Probability, Set Oriented Numerics and Evolutionary Computation. SCI, vol. 447, pp. 3–89. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Dirani, M., Altman, Z.: A cooperative reinforcement learning approach for inter-cell interference coordination in ofdma cellular networks. In: WiOpt, pp. 170–176. IEEE (2010)Google Scholar
  18. 18.
    European Telecommunications Standard Institute (ETSI), http://www.etsi.org
  19. 19.
    Goldberg, D., Korb, B., Deb, K.: Messy Genetic Algorithms: Motivation, Analysis, and First Results. Complex Systems 3(5), 493–530 (1989)MATHMathSciNetGoogle Scholar
  20. 20.
    Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In: International Conference on Evolutionary Computation, pp. 312–317 (1996)Google Scholar
  21. 21.
    Hartigan, J., Wong, M.: Algorithm AS 136: A K-means clustering algorithm. In: Applied Statistics, pp. 100–108 (1979)Google Scholar
  22. 22.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)Google Scholar
  23. 23.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79(8), 2554–2558 (1982)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Jensen, F.V.: Introduction to Bayesian Networks, 1st edn. Springer-Verlag New York, Inc., Secaucus (1996)Google Scholar
  25. 25.
    Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer (October 2002)Google Scholar
  26. 26.
    Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics 15(4), 580–585 (1985)CrossRefGoogle Scholar
  27. 27.
    Kim, S.: Cognitive Model-Based Autonomic Fault Management in SDN. Ph.D. thesis, Pohang University of Science and Technology (2013)Google Scholar
  28. 28.
    Kohonen, T.: Self-organized Formation of Topologically Correct Feature Maps. In: Neurocomputing: Foundations of Research, pp. 509–521. MIT Press, Cambridge (1988)Google Scholar
  29. 29.
    Langdon, W.B., Poli, R.: Foundations of genetic programming. Springer (2002)Google Scholar
  30. 30.
    Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer, Boston (2002)Google Scholar
  31. 31.
    Mannie, E.: Generalized Multi-Protocol Label Switching (GMPLS) Architecture. RFC 3945 (Proposed Standard) (October 2004), http://www.ietf.org/rfc/rfc3945.txt
  32. 32.
    McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., Turner, J.: Openflow: Enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)CrossRefGoogle Scholar
  33. 33.
    Mwanje, S., Mitschele-Thiel, A.: A q-learning strategy for lte mobility load balancing. In: Proceedings of the 24th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2013), London, UK (September 2013)Google Scholar
  34. 34.
    Open Networking Foundation, http://opennetworking.org
  35. 35.
    Open Networking Foundation: SDN architecture overview. ONF White paper (December 2013)Google Scholar
  36. 36.
    Pawlak, Z.: Rough set theory and its applications to data analysis. Cybernetics and Systems 29(7), 661–688 (1998)CrossRefMATHGoogle Scholar
  37. 37.
    Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP Magazine 3(1), 4–16 (2003)CrossRefGoogle Scholar
  38. 38.
    Rao, S., Shantha, C.: Numerical Methods: With Programs in BASIC, FORTRAN, Pascal and C++. Universities Press, India (2004)Google Scholar
  39. 39.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)Google Scholar
  40. 40.
    Rust, J.P.: Structural estimation of markov decision processes. In: Engle, R.F., McFadden, D. (eds.) Handbook of Econometrics, 1st edn., vol. 4, ch. 51, pp. 3081–3143. Elsevier (1986)Google Scholar
  41. 41.
    Simsek, M., Czylwik, A., Galindo-Serrano, A., Giupponi, L.: Improved decentralized q-learning algorithm for interference reduction in lte-femtocells. In: Wireless Advanced (WiAd), pp. 138–143 (June 2011)Google Scholar
  42. 42.
  43. 43.
    Strassner, J., Agoulmine, N., Lehtihet, E.: FOCALE: A Novel Autonomic Networking Architecture (2006)Google Scholar
  44. 44.
    Sutton, R., Barto, A.: Reinforcement learning: An introduction. MIT Press, Cambridge (1998)Google Scholar
  45. 45.
    Truong, K., Kuklinski, S.: Joint implementation of several lte-son functions. In: GLOBECOM Workshops, Atlanta, USA (December 2013)Google Scholar
  46. 46.
    Universal Mobile Telecommunications System (UMTS); LTE; Telecommunication management; Self-Organizing Networks (SON); Concepts and requirements. 3GPP TS 32.500 (version 8.0.0, Release 8) (December 2008)Google Scholar
  47. 47.
  48. 48.
    Walker, M.: Introduction to Genetic Programming (October 2001), http://www.cs.montana.edu/~bwall/cs580/introduction_to_gp.pdf
  49. 49.
    Zimmermann, H.J.: Fuzzy Set Theory and its Applications. Springer (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sławomir Kukliński
    • 1
    • 2
  • Jacek Wytrębowicz
    • 1
  • Khoa Truong Dinh
    • 1
  • Emilia Tantar
    • 3
  1. 1.Warsaw University of TechnologyWarsawPoland
  2. 2.Orange PolskaWarsawPoland
  3. 3.University of LuxembourgLuxembourgLuxembourg

Personalised recommendations