Skip to main content

Hypervolume Maximization via Set Based Newton’s Method

  • Conference paper

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 288)

Abstract

The hypervolume indicator is one of the most widely used tool to measure the performance in evolutionary multi-objective optimization. While derivative free methods such as specialized evolutionary algorithms received considerable attention in the past, the investigation of derivative based methods is still scarce. In this work, we aim to make a contribution to fill this gap.

Based on the hypervolume gradient that has recently been proposed for general unconstrained multi-objective optimization problems, we first investigate the behavior of the related hypervolume flow. Under this flow, populations evolve toward a final state (population) whose hypervolume indicator is locally maximal. Some insights obtained on selected test functions explain to a certain extend observations made in previous studies and give some possible insights into the application of mathematical programming techniques to this problem. Further, we apply a population-based version of the Newton Raphson method for the maximization of the hypervolume. Fast set-based convergence can be observed towards optimal populations, however, the results indicate that the success depends crucially on the choice of the initial population.

Keywords

  • multi-objective optimization
  • hypervolume indicator
  • set based optimization
  • multi-objective gradient
  • Newton Raphson method

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleischer, M.: The measure of pareto optima applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  2. Zitzler, E., Thiele, L., Bader, J.: SPAM: Set preference algorithm for multiobjective optimization. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 847–858. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  3. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, ETH Zurich, Switzerland (1999)

    Google Scholar 

  4. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  5. Emmerich, M., Beume, N., Naujoks, B.: An emo algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  6. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)

    CrossRef  Google Scholar 

  7. Koch, P., Kramer, O., Rudolph, G., Beume, N.: On the hybridization of sms-emoa and local search for continuous multiobjective optimization. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 603–610. ACM (2009)

    Google Scholar 

  8. Bader, J., Zitzler, E.: Hype: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation 19(1), 45–76 (2011)

    CrossRef  Google Scholar 

  9. Emmerich, M., Deutz, A., Beume, N.: Gradient-based/evolutionary relay hybrid for computing pareto front approximations maximizing the s-metric. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HCI/ICCV 2007. LNCS, vol. 4771, pp. 140–156. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  10. Emmerich, M., Deutz, A.: Time complexity and zeros of the hypervolume indicator gradient field. In: Schuetze, O., Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Moral, P.D., Legrand, P. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III. SCI, vol. 500, pp. 169–193. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  11. Hernández, V.A.S., Schütze, O., Rudolph, G., Trautmann, H.: The directed search method for pareto front approximations with maximum dominated hypervolume. In: Emmerich, M., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics,and Evolutionary Computation IV. AISC, vol. 227, pp. 189–205. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  12. Pareto, V.: Manual of Political Economy. The MacMillan Press (1971 (original edition in French in 1927))

    Google Scholar 

  13. Zitzler, E., Thiele, L., Laumanns, M., Foneseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    CrossRef  Google Scholar 

  14. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimal mu-distributions and the choice of the reference point. In: FOGA 2009: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp. 87–102. ACM, New York (2009)

    CrossRef  Google Scholar 

  15. Emmerich, M., Deutz, A. (eds.): EVOLVE 2013 - A Bridge Between Probability. Set Oriented Numerics, and Evolutionary Computation - Short Paper and Extended Abstract Proceedings, LIACS, Leiden University (July 2013)

    Google Scholar 

  16. Emmerich, M., Deutz, A.: A family of test problems with pareto-fronts of variable curvature based on super-spheres. In: MCDM 2006, Chania, Greece, June 19-23 (2006)

    Google Scholar 

  17. Schütze, O.: Set Oriented Methods for Global Optimization. PhD thesis, University of Paderborn (2004), http://ubdata.uni-paderborn.de/ediss/17/2004/schuetze/

  18. Köppen, M., Yoshida, K.: Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  19. Witting, K.: Numerical Algorithms for the Treatment of Parametric Optimization Problems and Applications. PhD thesis, University of Paderborn (2012)

    Google Scholar 

  20. Fliege, J., Drummond, L.M.G., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. on Optimization 20, 602–626 (2009)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Adrián Sosa Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sosa Hernández, V.A., Schütze, O., Emmerich, M. (2014). Hypervolume Maximization via Set Based Newton’s Method. In: Tantar, AA., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V. Advances in Intelligent Systems and Computing, vol 288. Springer, Cham. https://doi.org/10.1007/978-3-319-07494-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07494-8_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07493-1

  • Online ISBN: 978-3-319-07494-8

  • eBook Packages: EngineeringEngineering (R0)