Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 288))

Abstract

The multi-objective alliance algorithm (MOAA), a recently introduced optimization algorithm, is applied to the optimization of wireless sensor network layouts. Two different networks with 10 and 50 sensors respectively are optimized. MOAA performance is compared with that of NSGA-II and SPEA2 for 1000, 2000, 3000 and 5000 function evaluations for both networks. The epsilon and hypervolume indicators and the Kruskal-Wallis statistical test are used for the performance comparison. The results show that in most cases the MOAA outperforms both NSGA-II and SPEA2 on both versions of this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  2. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for multiobjective optimization. In: Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100 (2001)

    Google Scholar 

  5. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  6. Coello Coello, C.A., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation. Springer, Secaucus (2006)

    Google Scholar 

  7. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, 1st edn. Wiley, Chichester (2001)

    MATH  Google Scholar 

  8. Jourdan, D., de Weck, O.L.: Layout optimization for a wireless sensor network using a multi-objective genetic algorithm. In: IEEE Semiannual Vehicular Technology Conference, Milan, Italy, pp. 2466–2470 (2004)

    Google Scholar 

  9. Jia, J., Chen, J., Chang, G., Li, J., Jia, Y.: Coverage optimization based on improved NSGA-II in wireless sensor network. In: IEEE International Conference on Integration Technology, Shenzhen, China, pp. 614–618 (2007)

    Google Scholar 

  10. Alba, E., Molina, G.: Optimal wireless sensor network layout with metaheuristics: Solving a large scale instance. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2007. LNCS, vol. 4818, pp. 527–535. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Sengupta, S., Das, S., Nasir, M., Panigrahi, B.: Multi-objective node deployment in WSNs: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity. Eng. Appl. Artif. Intell. 26(1), 405–416 (2013)

    Article  Google Scholar 

  12. Konstantinidis, A., Yang, K., Zhang, Q., Zeinalipour-Yazti, D.: A multi-objective evolutionary algorithm for the deployment and power assignment problem in wireless sensor networks. Comput. Networks 54(6), 960–976 (2010)

    Article  MATH  Google Scholar 

  13. Lattarulo, V., Parks, G.T.: A preliminary study of a new multi-objective optimization algorithm. In: International Conference on Evolutionary Computation (CEC), Brisbane, Australia, pp. 1–8 (2012)

    Google Scholar 

  14. Lattarulo, V.: Application of an innovative optimization algorithm for the management of energy resources. BSc thesis, University of Salerno (2009)

    Google Scholar 

  15. Calderaro, V., Galdi, V., Lattarulo, V., Siano, P.: A new algorithm for steady state load-shedding strategy. In: 12th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, pp. 48–53 (2010)

    Google Scholar 

  16. Lattarulo, V.: Optimization of biped robot behaviors by ‘alliance algorithm’. Master’s thesis, University of Hertfordshire (2011)

    Google Scholar 

  17. Lattarulo, V., van Dijk, S.G.: Application of the “Alliance algorithm” to energy constrained gait optimization. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 472–483. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Lattarulo, V., Zhang, J., Parks, G.T.: Application of the MOAA to satellite constellation refueling optimization. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 669–684. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Lattarulo, V., Parks, G.T.: Testing of Multi-Objective Alliance Algorithm on benchmark functions. In: GECCO 2013, Amsterdam, The Netherlands, pp. 1679–1682 (2013)

    Google Scholar 

  20. Lattarulo, V., Seshadri, P., Parks, G.T.: Optimization of a supersonic airfoil using the Multi-Objective Alliance Algorithm. In: GECCO 2013, Amsterdam, The Netherlands, pp. 1333–1340 (2013)

    Google Scholar 

  21. Lattarulo, V., Kipouros, T., Parks, G.T.: Application of the Multi-objective Alliance Algorithm to a benchmark aerodynamic optimization problem. In: International Conference on Evolutionary Computation (CEC), Cancun, Mexico, pp. 3182–3189 (2013)

    Google Scholar 

  22. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lattarulo, V.: Multi-Objective Alliance Algorithm. Technical Report CUED/C-EDC/TR.157, Department of Engineering, University of Cambridge (2011)

    Google Scholar 

  24. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – A platform and programming language independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  26. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) (February 2006)

    Google Scholar 

  27. Seshadri, A.: NSGA-II Matlab version, http://www.mathworks.co.uk/matlabcentral/fileexchange/10429-nsga-ii-a-multi-objective-optimization-algorithm (accessed December 2012)

  28. Laumanns, M.: SPEA 2, http://www.tik.ee.ethz.ch/pisa/selectors/spea2/?page=spea2.php (accessed November 2011)

  29. Kukkonen, S., Deb, K.: A fast and effective method for pruning of non-dominated solutions in many-objective problems. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 553–562. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  31. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. TIK Report 112, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) (July 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Lattarulo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lattarulo, V., Parks, G.T. (2014). Application of the MOAA for the Optimization of Wireless Sensor Networks. In: Tantar, AA., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V. Advances in Intelligent Systems and Computing, vol 288. Springer, Cham. https://doi.org/10.1007/978-3-319-07494-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07494-8_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07493-1

  • Online ISBN: 978-3-319-07494-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics