Towards Autonomous Mobile Robots for the Exploration of Steep Terrain

  • Braden StenningEmail author
  • Lauren Bajin
  • Christine Robson
  • Valentin Peretroukhin
  • Gordon R. Osinski
  • Timothy D. Barfoot
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 105)


Steep, natural terrain offers excellent opportunities for scientific investigations into the composition and history of Mars and other planetary bodies. In this paper, we present a prototype tethered robot, vScout (vertical scout), capable of operating in steep, rugged terrain. The primary purpose of this vehicle is to support field geologists conducting research on cliffs, in canyons, and on crater walls. However, the long-term vision is to develop a system suitable for planetary exploration (and more diverse terrestrial applications). Unlike other systems for exploration in steep terrain, vScout has demonstrated autonomous operation on steep surfaces by making use of a network of reusable paths and visual teach & repeat. Here we describe the first vScout prototype and our experiences with it. We also outline some challenges and the directions we intend to take with this research.


Path Planning Stereo Camera Iterative Learning Control Rough Terrain Autonomous Mobile Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abad-Manterola, P., Nesnas, I., Burdick, J.: Motion Planning on Steep Terrain for the Tethered Axel Rover. In: IEEE ICRA 2011, pp. 4188–4195 (2011)Google Scholar
  2. 2.
    Bares, J., Wettergreen, D.: Dante II: Technical Description, Results and Lessons Learned. Int. J. Robot. Res. 18(7), 621–649 (1999)CrossRefGoogle Scholar
  3. 3.
    Briones, L., Bustamante, P., Serna, M.: Wall-climbing robot for inspection in nuclear power plants. In: ICRA 1994, vol. 2, pp. 1409–1414 (1994), doi:10.1109/ROBOT.1994.351292Google Scholar
  4. 4.
    Furgale, P., Barfoot, T.: Visual Teach and Repeat for Long-Range Rover Autonomy. J. Field Robot. 27(5), 534–560 (2010)CrossRefGoogle Scholar
  5. 5.
    Hirose, S., Tsutsumitake, H.: Disk Rover: A Wall-Climbing Robot using Permanent Magnets. In: IROS 1992, vol. 3, pp. 2074–2079 (1992), doi:10.1109/IROS.1992.601942Google Scholar
  6. 6.
    Huntsberger, T., Stroupe, A., Aghazarian, H., Garrett, M., Younse, P., Powell, M.: TRESSA: Teamed Robots for Exploration and Science on Steep Areas. J. Field Robot. 24(11-12), 1015–1031 (2007), doi:10.1002/rob.20219CrossRefGoogle Scholar
  7. 7.
    Kim, S., Asbeck, A., Cutkosky, M., Provancher, W.: Spinybotii: climbing hard walls with compliant microspines. In: ICAR 2005, pp. 601–606 (2005), doi:10.1109/ICAR.2005.1507470Google Scholar
  8. 8.
    Matthies, L., Maimone, M.W., Johnson, A.E., Cheng, Y., Willson, R.G., Villalpando, C., Goldberg, S.B., Huertas, A., Stein, A.N., Angelova, A.: Computer Vision on Mars. Int. J. Comput. Vision 75(1), 67–92 (2007)CrossRefGoogle Scholar
  9. 9.
    McManus, C., Furgale, P., Stenning, B., Barfoot, T.D.: Lighting-invariant visual teach and repeat using appearance-based lidar. J. Field Robot. 30(2), 254–287 (2013)CrossRefGoogle Scholar
  10. 10.
    Murphy, M.P., Kute, C., Mengüç, Y., Sitti, M.: Waalbot II: Adhesion Recovery and Improved Performance of a Climbing Robot using Fibrillar Adhesives. Int. J. Robot. Res. 30(1), 118–133 (2011), doi:10.1177/0278364910382862CrossRefGoogle Scholar
  11. 11.
    Nesnas, I.A., Matthews, J.B., Abad-Manterola, P., Burdick, J.W., Edlund, J.A., Morrison, J.C., Peters, R.D., Tanner, M.M., Miyake, R.N., Solish, B.S., Anderson, R.C.: Axel and DuAxel rovers for the sustainable exploration of extreme terrains. J. Field Robot. 29(4), 663–685 (2012), doi:10.1002/rob.21407CrossRefGoogle Scholar
  12. 12.
    Ostafew, C.J., Schoellig, A.P., Barfoot, T.D.: Iterative learning control to reduce path-tracking error for a mobile robot. In: IROS 2013, Tokyo, Japan (2013)Google Scholar
  13. 13.
    Se, S., Jasiobedzki, P.: Photo-realistic 3D model reconstruction. In: ICRA 2006 (2006)Google Scholar
  14. 14.
    Spenko, M.J., Haynes, G.C., Saunders, J.A., Cutkosky, M.R., Rizzi, A.A., Full, R.J., Koditschek, D.E.: Biologically inspired climbing with a hexapedal robot. J. Field Robot. 25(4-5), 223–242 (2008), doi:10.1002/rob.20238CrossRefGoogle Scholar
  15. 15.
    Stenning, B.E., McManus, C., Barfoot, T.: Planning using a network of reusable paths: A physical embodiment of a rapidly exploring random tree. J. Field Robot. (2013)Google Scholar
  16. 16.
    Zhang, R., Latombe, J.C.: Capuchin: A free-climbing robot. Int. J. Adv. Robot. Syst. 10 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Braden Stenning
    • 1
    Email author
  • Lauren Bajin
    • 1
  • Christine Robson
    • 1
  • Valentin Peretroukhin
    • 1
  • Gordon R. Osinski
    • 1
    • 2
  • Timothy D. Barfoot
    • 1
  1. 1.Institute for Aerospace StudiesUniversity of TorontoTorontoCanada
  2. 2.Depts. of Earth Science, Physics and AstronomyUniversity of Western OntarioLondonCanada

Personalised recommendations