Context Dependent Preference Acquisition with Personality-Based Active Learning in Mobile Recommender Systems

  • Matthias Braunhofer
  • Mehdi Elahi
  • Mouzhi Ge
  • Francesco Ricci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8524)


Nowadays, Recommender Systems (RSs) play a key role in many businesses. They provide consumers with relevant recommendations, e.g., Places of Interest (POIs) to a tourist, based on user preference data, mainly in the form of ratings for items. The accuracy of recommendations largely depends on the quality and quantity of the ratings (preferences) provided by the users. However, users often tend to rate no or only few items, causing low accuracy of the recommendation. Active Learning (AL) addresses this problem by actively selecting items to be presented to the user in order to acquire a larger number of high-quality ratings (preferences), and hence, improve the recommendation accuracy. In this paper, we propose a personalized active learning approach that leverages user’s personality data to get more and better in-context ratings. We have designed a novel human computer interaction and assessed our proposed approach in a live user study - which is not common in active learning research. The main result is that the system is able to collect better ratings and provide more relevant recommendations compared to a variant that is using a state of the art approach to preference acquisition.


Recommender Systems Collaborative Filtering Personalized Active Learning Cold start Mobile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook. Springer (2011)Google Scholar
  2. 2.
    Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recommender systems. AI Magazine 32(3), 67–80 (2011)Google Scholar
  3. 3.
    Carenini, G., Smith, J., Poole, D.: Towards more conversational and collaborative recommender systems. In: Proceedings of the 2003 International Conference on Intelligent User Interfaces, Miami, FL, USA, January 12-15, pp. 12–18 (2003)Google Scholar
  4. 4.
    Rashid, A.M., Karypis, G., Riedl, J.: Learning preferences of new users in recommender systems: an information theoretic approach. SIGKDD Explorations 10(2), 90–100 (2008)CrossRefGoogle Scholar
  5. 5.
    Rubens, N., Kaplan, D., Sugiyama, M.: Active learning in recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 735–767. Springer (2011)Google Scholar
  6. 6.
    Elahi, M., Ricci, F., Rubens, N.: Active learning strategies for rating elicitation in collaborative filtering: A system-wide perspective. ACM Trans. Intell. Syst. Technol. 5(1), 13:1–13:33 (2014)Google Scholar
  7. 7.
    Elahi, M., Braunhofer, M., Ricci, F., Tkalcic, M.: Personality-based active learning for collaborative filtering recommender systems. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS, vol. 8249, pp. 360–371. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Gosling, S.D., Rentfrow, P.J., Swann Jr., W.B.: A very brief measure of the big-five personality domains. Journal of Research in Personality 37(6), 504–528 (2003)CrossRefGoogle Scholar
  9. 9.
    Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., Mcnee, S.M., Konstan, J.A., Riedl, J.: Getting to know you: Learning new user preferences in recommender systems. In: Proceedings of the 2002 International Conference on Intelligent User Interfaces, IUI 2002, pp. 127–134. ACM Press (2002)Google Scholar
  10. 10.
    McNee, S.M., Lam, S.K., Konstan, J.A., Riedl, J.: Interfaces for eliciting new user preferences in recommender systems. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, pp. 178–187. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)CrossRefGoogle Scholar
  12. 12.
    Braunhofer, M., Elahi, M., Ricci, F., Schievenin, T.: Context-aware points of interest suggestion with dynamic weather data management. In: 21st Conference on Information and Communication Technologies in Tourism (ENTER). Springer (2014)Google Scholar
  13. 13.
    Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context relevance assessment and exploitation in mobile recommender systems. Personal and Ubiquitous Computing 16(5), 507–526 (2012)CrossRefGoogle Scholar
  14. 14.
    Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H., Newell, C.: Explaining the user experience of recommender systems. User Modeling and User-Adapted Interaction 22(4-5), 441–504 (2012)CrossRefGoogle Scholar
  15. 15.
    Harpale, A.S., Yang, Y.: Personalized active learning for collaborative filtering. In: SIGIR 2008: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 91–98. ACM, New York (2008)CrossRefGoogle Scholar
  16. 16.
    Golbandi, N., Koren, Y., Lempel, R.: Adaptive bootstrapping of recommender systems using decision trees. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 595–604. ACM, New York (2011)Google Scholar
  17. 17.
    Rentfrow, P.J., Gosling, S.D., et al.: The do re mi’s of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology 84(6), 1236–1256 (2003)CrossRefGoogle Scholar
  18. 18.
    Hu, R., Pu, P.: A study on user perception of personality-based recommender systems. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 291–302. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Matthias Braunhofer
    • 1
  • Mehdi Elahi
    • 1
  • Mouzhi Ge
    • 1
  • Francesco Ricci
    • 1
  1. 1.Free University of Bozen-BolzanoBozen-BolzanoItaly

Personalised recommendations