Advertisement

Markov Chain and Classification of Difficulty Levels Enhances the Learning Path in One Digit Multiplication

  • Behnam Taraghi
  • Anna Saranti
  • Martin Ebner
  • Martin Schön
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8523)

Abstract

In this work we focus on a specific application named “1x1 trainer” that has been designed to assist children in primary school to learn one digit multiplications. We investigate the database of learners’ answers to the asked questions by applying Markov chain and classification algorithms. The analysis identifies different clusters of one digit multiplication problems in respect to their difficulty for the learners. Next we present and discuss the outcomes of our analysis considering Markov chain of different orders for each question. The results of the analysis influence the learning path for every pupil and offer a personalized recommendation proposal that optimizes the way questions are asked to each pupil individually.

Keywords

Learning Analytics One digit multiplication Knowledge discovery Math Markov chain Primary school 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Linton, F., Schaefer, H.P.: Recommender systems for learning: Building user and expert models through long-term observation of application use. User Modeling and User-Adapted Interaction 10, 181–207 (2000)CrossRefGoogle Scholar
  2. 2.
    Taraghi, B., Grossegger, M., Ebner, M., Holzinger, A.: Web Analytics of user path tracing and a novel algorithm for generating recommendations in Open Journal Systems. Online Information Review 37(5), 672–691 (2013)CrossRefGoogle Scholar
  3. 3.
    Duval, E.: Attention Please! Learning Analytics for Visualization and Recommendation. In: Proceedings of LAK 2011: 1st International Conference on Learning Analytics and Knowledge (2011)Google Scholar
  4. 4.
    Siemens, G., Baker, R.S.J.: Learning Analytics and Educational Data Mining: Towards Communication and Collaboration. In: LAK 2012 Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, pp. 252–254 (2012)Google Scholar
  5. 5.
    Ebner, M., Schön, M.: Why Learning Analytics in Primary Education Matters! Bulletin of the Technical Committee on Learning Technology 15(2), 14–17 (2013); Karagiannidis, C., Graf, S. (eds.)Google Scholar
  6. 6.
    Schön, M., Ebner, M., Kothmeier, G.: It’s Just About Learning the Multiplication Table. In: Shum, S.B., Gasevic, D., Ferguson, R. (eds.) Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (LAK 2012), pp. 73–81. ACM, New York (2012), doi:10.1145/2330601.2330624CrossRefGoogle Scholar
  7. 7.
    Ebner, M., Schön, M., Taraghi, B., Steyrer, M.: Teachers Little Helper: Multi-Math-Coach. In: Nunes, M.B., McPherson, M. (eds.) Proceedings of the IADIS International Conference e-Learning 2013, pp. 183–190. IADIS Press, Prague (2013)Google Scholar
  8. 8.
    Ebner, M., Schön, M., Neuhold, B.: Learning Analytics in basic math education – first results from the field. eLearning Papers 36, 24–27 (2014)Google Scholar
  9. 9.
    Gerster, H.D.: Schwierigkeiten bei der Entwicklung arithmetischer Konzepte im Zahlenraum bis 100. In: Fritz, A., Ricken, G., Schmidt, S. (eds.) Rechenschwäche. Lernwege, Schwierigkeiten und Hilfen bei Dyskalkulie, pp. 248–268. Beltz, Weinheim (2009)Google Scholar
  10. 10.
    Landerl, K., Butterworth, B., Lorenz, J.H., Möderl, K.: Rechenschwäche - Rechenstörung - Dyskalkulie: Erkennung - Prävention – Förderung. Leykam, Graz (2003)Google Scholar
  11. 11.
    Fuson, K.C.: Using a base-ten blocks learning/teaching approach for first- and second-grade- place-value and multidigit addition and subtraction. Journal for Research in Mathematics Education 21(3), 180–206 (1990), http://webschoolpro.com/home/projectlead/Research%20Articles%20and%20links/Base%20Ten%20Blocks.pdf CrossRefGoogle Scholar
  12. 12.
    Geary, D.C., Widaman, K.F., Little, T.D.: Cognitive addition and multiplication: Evidence for a single memory network. Memory & Cognition 14, 478–487 (1986)CrossRefGoogle Scholar
  13. 13.
    Stazyk, E.H., Ashcraft, M.H., Hamann, M.S.: A network approach to mental multiplication. Journal of Experimental Psychology: Learning, Memory, & Cognition 8, 320–335 (1982)Google Scholar
  14. 14.
    Verguts, T., Fias, W.: Neighbourhood effects in mental arithmetic. Psychology Science 47, 132–140 (2005)Google Scholar
  15. 15.
    Chambers, D.: Direct modeling and invented procedures: Building on children’s informal strategies. Teaching Children Mathematics 3, 92–95 (1996)Google Scholar
  16. 16.
    Garnett, K.: Developing fluency with basic number facts: Intervention for students with learning disabilities. Learning Disabilities Research & Practice 7, 210–216 (1992)Google Scholar
  17. 17.
    Thornton, C.: Strategies for the basic facts. In: Payne, J. (ed.) Mathematics for the Young Child, pp. 133–151. National Council of Teachers of Mathematics, Reston (1990)Google Scholar
  18. 18.
    Taraghi, B., Ebner, M., Saranti, A., Schön, M.: On Using Markov Chain to Evidence the Learning Structures and Difficulty Levels of One Digit Multiplication. In: Proceedings of the 4nd International Conference on Learning Analytics and Knowledge, Indianapolis, USA, pp. 68–72 (in print, 2014)Google Scholar
  19. 19.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Proceedings of the Seventh International Conference on World Wide Web 7, WWW7, pp. 107–117. Elsevier Science Publishers B. V., Amsterdam (1998)Google Scholar
  20. 20.
    Deshpande, M., Karypis, G.: Selective Markov models for predicting web page accesses. ACM Trans. Internet Technol. 4(2), 163–184 (2004)CrossRefGoogle Scholar
  21. 21.
    Lempel, R., Moran, S.: The stochastic approach for link-structure analysis (salsa) and the tkc effect. Comput. Netw. 33(1-6), 387–401 (2000)CrossRefGoogle Scholar
  22. 22.
    Borges, J., Levene, M.: Evaluating variable-length Markov chain models for analysis of user web navigation sessions. IEEE Trans. on Knowl. And Data Eng. 19(4), 441–452 (2007)CrossRefGoogle Scholar
  23. 23.
    Bishop, C.: Pattern Recognition and Machine Learning, pp. 424–430. Springer Science and Business Media, LLC, New York (2006)zbMATHGoogle Scholar
  24. 24.
    Bishop, C.: Pattern Recognition and Machine Learning, pp. 32–33. Springer Science and Business Media, LLC, New York (2006)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Behnam Taraghi
    • 1
  • Anna Saranti
    • 1
  • Martin Ebner
    • 1
  • Martin Schön
    • 1
  1. 1.Graz University of TechnologyGrazAustria

Personalised recommendations