Digital Literacy for All Through Integrative STEM

  • Leo A. Siiman
  • Carlos Manuel Pacheco Cortés
  • Margus Pedaste
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8523)


The ever growing importance of digital literacy requires an effective educational strategy to introduce it into K-12 education. We propose teaching digital competences within the context of an integrative STEM framework. An overview of integrative STEM, its two core components (design from the context of technology education and inquiry from science education), and the natural connections to digital literacy are discussed. Two examples are given—robotics and 3-D computer software—as promising digital platforms to implement this strategy. Including digital literacy in integrative STEM offers all K-12 students the opportunity to acquire digital competences.


Digital literacy technology education integrative STEM design inquiry robotics 3-D technology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Jong, T., van Joolingen, W., Giemza, A., Girault, I., Hoppe, U., Kindermann, J., Kluge, A., Lazonder, A., Vold, V., Weinberger, A., Weinbrenner, S., Wichmann, A., Anjewierden, A., Bodin, M., Bollen, L., d’Ham, C., Dolonen, J., Engler, J., Geraedts, C., Grosskreutz, H., Hovardas, T., Julien, R., Lechner, J., Ludvigsen, S., Matteman, Y., Meistadt, Ø., Næss, B., Ney, M., Pedaste, M., Perritano, A., Rinket, M., von Schlanbusch, H., Sarapuu, T., Schulz, F., Sikken, J., Slotta, J., Toussaint, J., Verkade, A., Wajeman, C., Wasson, B., Zacharia, Z., van der Zanden, M.: Learning by creating and exchanging objects: The SCY experience. British Journal of Educational Technology 41(6), 909–921 (2010)CrossRefGoogle Scholar
  2. 2.
    de Jong, T., Weinberger, A., Girault, I., Kluge, A., Lazonder, A.W., Pedaste, M., Ludvigsen, S., Ney, M., Wasson, B., Wichmann, A., Geraedts, C., Giemza, A., Hovardas, A., Julien, R., van Joolingen, W.R., Lejeune, A., Manoli, C., Matteman, Y., Sarapuu, T., Verkade, A., Vold, V., Wanders, B., Zacharia, Z.C.: Using scenarios to design complex technology-enhanced learning environments. Educational Technology Research & Development 60(5), 883–901 (2012)CrossRefGoogle Scholar
  3. 3.
    Pedaste, M., de Jong, T., Sarapuu, T., Piksööt, J., van Joolingen, W.R., Giemza, A.: Investigating ecosystems as a blended learning experience. Science 340(6140), 1537–1538 (2013)CrossRefGoogle Scholar
  4. 4.
    Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henrikson, H., Hemmo, V.: Science education now: A renewed pedagogy for the future of Europe. European Commission: Directorate-General for Research, Brussels (2007)Google Scholar
  5. 5.
    Chang, C.-Y., Tsai, C.-C.: The interplay between different forms of CAI and students’ preferences of learning environment in the secondary science class. Science Education 89(5), 707–724 (2005)CrossRefGoogle Scholar
  6. 6.
    Chang, C., Hsiao, C., Barufaldi, J.-P.: Preferred-actual learning environment “spaces” and earth science outcomes in Taiwan. Learning Environment Spaces 90(3), 420–433 (2006)Google Scholar
  7. 7.
    Alberts, B.: Restoring science to science education. Issues in Science and Technology. A Publication of National Academy of Sciences, National Academy of Engineering, Institute of Medicine, University of Texas at Dallas (2009), (retrieved December 14, 2013)
  8. 8.
    Sanders, M.: STEM, STEM education, STEMmania. The Technology Teacher 68(4), 20–26 (2009)Google Scholar
  9. 9.
    European Union. Recommendation of the European Parliament and of the Council of 18 December 2006 on key competences for lifelong learning. Journal of the European Union, L394 (2006), (retrieved)
  10. 10.
    Hobbs, R.: Empowering Learners with Digital and Media Literacy. Knowledge Quest 39(5), 12–17 (2011)Google Scholar
  11. 11.
    Alfieri, L., Brooks, P.J., Aldrich, N.J., Tenenbaum, H.R.: Does discovery-based instruction enhance learning? Journal of Educational Psychology 103, 1–18 (2011)CrossRefGoogle Scholar
  12. 12.
    Furtak, E.M., Seidel, T., Iverson, H., Briggs, D.C.: Experimental and quasiexperimental studies of inquiry-based science teaching. Review of Educational Research 82, 300–329 (2012)CrossRefGoogle Scholar
  13. 13.
    de Jong, T.: Computer simulations: Technological advances in inquiry learning. Science 312, 532–533 (2006)CrossRefGoogle Scholar
  14. 14.
    Mäeots, M., Pedaste, M., Sarapuu, T.: Interactions between Inquiry Processes in a Web-Based Learning Environment. Paper presented at the Advanced Learning Technologies (ICALT), 2011 11th IEEE International Conference on Advanced Learning Technologies, Athens, USA (2011)Google Scholar
  15. 15.
    Brophy, S., Klein, S., Portsmore, M., Rogers, C.: Advancing engineering education in P-12 classrooms. Journal of Engineering Education 97(3), 369–387 (2008)CrossRefGoogle Scholar
  16. 16.
    UK Department for Education. National curriculum in England: design and technology programmes of study (2013), (retrieved)
  17. 17.
    Jonassen, D.H.: Toward a design theory of problem solving. Educational Technology Research and Development 48, 63–85 (2000)CrossRefGoogle Scholar
  18. 18.
    Cantrell, P., Pekcan, G., Itani, A., Velasquez-Bryant, N.: The effects of engineering modules on student learning in middle school science classrooms. Journal of Engineering Education 95(4), 301–309 (2006)CrossRefGoogle Scholar
  19. 19.
    Cejka, E., Rogers, C., Portsmore, M.: Kindergarten robotics: Using robotics to motivate math, science, and engineering literacy in elementary school. International Journal of Engineering Education 22(4), 711–722 (2006)Google Scholar
  20. 20.
    Roehrig, G.H., Moore, T.J., Wang, H.H., Park, M.S.: Is Adding the E Enough? Investigating the Impact of K-12 Engineering Standards on the Implementation of STEM Integration. School Science and Mathematics 112(1), 31–44 (2012)CrossRefGoogle Scholar
  21. 21.
    National Research Council. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. The National Academies Press, Washington, DC (2012)Google Scholar
  22. 22.
    Lewis, T.: Design and inquiry: Basis for an accommodation between science and technology education in the curriculum? Journal of Research in Science Teaching 43, 255–281 (2006)CrossRefGoogle Scholar
  23. 23.
    Wells, J.G.: Integrative STEM education at Virginia Tech: Graduate preparation for tomorrow’s leaders. Technology & Engineering Teacher 72(5), 28–34 (2013)Google Scholar
  24. 24.
    Altin, H., Pedaste, M.: Learning approaches to applying robotics in science education. Journal of Baltic Science Education 12(3), 365–377 (2013)Google Scholar
  25. 25.
    UK Department for Education. 3D printers in schools: uses in the curriculum (2013), (retreived)
  26. 26.
    Siiman, L.A., Pedaste, M.: Towards a pedagogy for using digital 3-D content in science education. In: 6th International Conference of Education, Research and Innovation (ICERI 2013), Seville, Spain, November 18-20, pp. 5992–5999 (2013)Google Scholar
  27. 27.
    Wai, J., Lubinski, D., Benbow, C.P.: Spatial Ability for STEM Domains: Aligning Over 50 Years of Cumulative Psychological Knowledge Solidifies Its Importance. Journal of Educational Psychology 101, 817–835 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Leo A. Siiman
    • 1
  • Carlos Manuel Pacheco Cortés
    • 1
  • Margus Pedaste
    • 1
  1. 1.Institute of EducationUniversity of TartuEstonia

Personalised recommendations