A Team Formation Tool for Educational Environments

  • Elena del Val
  • Juan Miguel Alberola
  • Victor Sanchez-Anguix
  • Alberto Palomares
  • Ma Dolores Teruel
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 293)

Abstract

Teamwork is a critical competence in the higher education area, and it has become a critical task in educational and management environments. Unfortunately, looking for optimal or near optimal teams is a costly task for humans due to the exponential number of outcomes. In this paper, we present a web application that facilitates the task of automatic team generation of near optimal teams based on collective intelligence, coalition structure generation, and Bayesian learning. This tool has been used in real classroom scenario and the data collected from the experience has been used as input for synthetic simulations. The experiments show that the tool is able of converging towards the optimal solution (team formation) as long as students do not have great difficulties evaluating others.

Keywords

Team formation Coalitions Education 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belbin, R.M.: Team roles at work. Routledge (2010)Google Scholar
  2. 2.
    Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., Garcia-Peñalvo, F.J., Tovar, E.: Project managers in global software development teams: a study of the effects on productivity and performance. Software Quality Journal, 1–17 (2012)Google Scholar
  3. 3.
    Furnham, A., Steele, H., Pendleton, D.: A psychometric assessment of the belbin team-role self-perception inventory. Journal of Occupational and Organizational Psychology 66(3), 245–257 (1993)CrossRefGoogle Scholar
  4. 4.
    Guzzo, R.A., Dickson, M.W.: Teams in organizations: Recent research on performance and effectiveness. Annual Review of Psychology 47(1), 307–338 (1996)CrossRefGoogle Scholar
  5. 5.
    Guzzo, R.A., Shea, G.P.: Group performance and intergroup relations in organizations. In: Handbook of Industrial and Organizational Psychology, vol. 3, pp. 269–313 (1992)Google Scholar
  6. 6.
    Henry, S.M., Todd Stevens, K.: Using belbin’s leadership role to improve team effectiveness: an empirical investigation. Journal of Systems and Software 44(3), 241–250 (1999)CrossRefGoogle Scholar
  7. 7.
    Higgs, M., Pewina, U., Ploch, J.: Influence of team composition and task complexity on team performance. Team Performance Management 11(7/8), 227–250 (2005)CrossRefGoogle Scholar
  8. 8.
    Johnson, D.W., Johnson, R.T.: An educational psychology success story: Social interdependence theory and cooperative learning. Educational Researcher 38(5), 365–379 (2009)CrossRefGoogle Scholar
  9. 9.
    Johnson, D.W., Johnson, R.T., Smith, K.: The state of cooperative learning in postsecondary and professional settings. Educational Psychology Review 19(1), 15–29 (2007)CrossRefGoogle Scholar
  10. 10.
    Maffioli, F., Augusti, G.: Tuning engineering education into the european higher education orchestra. European Journal of Engineering Education 28(3), 251–273 (2003)CrossRefGoogle Scholar
  11. 11.
    Ohta, N., Conitzer, V., Ichimura, R., Sakurai, Y., Iwasaki, A., Yokoo, M.: Coalition structure generation utilizing compact characteristic function representations. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 623–638. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Pajares, S., Sanchez-Anguix, V., Torreño, A., Esparcia, S.: A novel teaching-learning strategy for teamwork based on agreement technologies. In: IJCA Proceedings on Design and Evaluation of Digital Content for Education (DEDCE), vol. (1), pp. 21–30 (2011)Google Scholar
  13. 13.
    Parker, G.M.: Team players and teamwork: New strategies for developing successful collaboration. John Wiley & Sons (2008)Google Scholar
  14. 14.
    Rahwan, T., Ramchurn, S.D., Jennings, N.R., Giovannucci, A.: An anytime algorithm for optimal coalition structure generation. Journal of Artificial Intelligence Research 34(2), 521 (2009)MATHMathSciNetGoogle Scholar
  15. 15.
    Rajendran, M.: Analysis of team effectiveness in software development teams working on hardware and software environments using belbin self-perception inventory. Journal of Management Development 24(8), 738–753 (2005)CrossRefGoogle Scholar
  16. 16.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (2010)Google Scholar
  17. 17.
    Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M., Edwards, D.D.: Artificial intelligence: a modern approach, vol. 74. Prentice Hall, Englewood Cliffs (1995)MATHGoogle Scholar
  18. 18.
    Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohmé, F.: Coalition structure generation with worst case guarantees. Artificial Intelligence 111(1), 209–238 (1999)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Senior, B., Swailes, S.: A comparison of the belbin self perception inventory and observer’s assessment sheet as measures of an individual’s team roles. International Journal of Selection and Assessment 6(1), 1–8 (1998)CrossRefGoogle Scholar
  20. 20.
    Sundstrom, E., De Meuse, K.P., Futrell, D.: Work teams: Applications and effectiveness. American Psychologist 45(2), 120 (1990)CrossRefGoogle Scholar
  21. 21.
    Swailes, S., McIntyre-Bhatty, T.: The belbin team role inventory: reinterpreting reliability estimates. Journal of Managerial Psychology 17(6), 529–536 (2002)CrossRefGoogle Scholar
  22. 22.
    Wheelan, S.A.: Creating effective teams: A guide for members and leaders. Sage (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Elena del Val
    • 1
  • Juan Miguel Alberola
    • 1
  • Victor Sanchez-Anguix
    • 1
  • Alberto Palomares
    • 1
  • Ma Dolores Teruel
    • 1
  1. 1.Departament de Sistemes Informàtics i ComputacióUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations