Advertisement

The Multi-period Profit Collection Vehicle Routing Problem with Time Windows

  • Yubin Xie
  • Zizhen Zhang
  • Hu Qin
  • Songshan Guo
  • Andrew Lim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8482)

Abstract

This paper addresses a new variant of the vehicle routing problem with time windows that takes drivers’ working periods into consideration. In this problem, each vehicle is dispatched to perform one route in a multi-period planning horizon. At the end of each period, each vehicle is not required to return to the depot but must stay at one of vertices for recuperation. We propose a tabu search algorithm to solve 48 test instances generated from Solomon’s VRPTW instances. The computational results can serve as benchmarks for future researchers on the problem.

Keywords

vehicle routing problem multiple working periods tabu search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lau, H.C., Sim, M., Teo, K.M.: Vehicle routing problem with time windows and a limited number of vehicles. European Journal of Operational Research 148(3), 559–569 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: Iterated local search for the team orienteering problem with time windows. Computers & Operations Research 36(12), 3281–3290 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: A survey. European Journal of Operational Research 209(1), 1–10 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Savelsbergh, M., Sol, M.: Drive: Dynamic routing of independent vehicles. Operations Research 46(4), 474–490 (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    Xu, H., Chen, Z.L., Rajagopal, S., Arunapuram, S.: Solving a practical pickup and delivery problem. Transportation Science 37(3), 347–364 (2003)CrossRefGoogle Scholar
  6. 6.
    Goel, A.: Vehicle scheduling and routing with drivers’ working hours. Transportation Science 43(1), 17–26 (2009)CrossRefGoogle Scholar
  7. 7.
    Goel, A.: Truck driver scheduling in the European union. Transportation Science 44(4), 429–441 (2010)CrossRefGoogle Scholar
  8. 8.
    Kok, A.L., Meyer, C.M., Kopfer, H., Schutten, J.M.J.: A dynamic programming heuristic for the vehicle routing problem with time windows and European community social legislation. Transportation Science 44(4), 442–454 (2010)CrossRefGoogle Scholar
  9. 9.
    Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks 30(2), 105–119 (1997)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: Theory, algorithms, and applications. Prentice Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  11. 11.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part I: Route construction and local search algorithms. Transportation Science 39(1), 104–118 (2005)CrossRefGoogle Scholar
  13. 13.
    Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35(2), 254–265 (1987)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yubin Xie
    • 1
  • Zizhen Zhang
    • 1
  • Hu Qin
    • 2
  • Songshan Guo
    • 1
  • Andrew Lim
    • 3
  1. 1.Sun Yat-Sen UniversityGuangdongChina
  2. 2.Huazhong University of Science and TechnologyWuhanChina
  3. 3.Nanjing UniversityNanjingChina

Personalised recommendations