Advertisement

The Stowage Stack Minimization Problem with Zero Rehandle Constraint

  • Ning Wang
  • Zizhen Zhang
  • Andrew Lim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8482)

Abstract

The stowage stack minimization problem with zero rehandle constraint (SSMP-ZR) aims to find a minimum number of stacks to accommodate all the containers in a multi-port voyage without occurring container rehandles. In this paper, we first give the integer models of the SSMP-ZR (with uncapacitated and capacitated stack height). Next, heuristic algorithms are proposed to construct solutions to the SSMP-ZR. The theoretical performance guarantee of the algorithms is then discussed. To evaluate the actual performance of the algorithms, we conduct experiments on a set of instances with practical size. The results demonstrate that our heuristic approaches can generate very promising solutions compared with the random loading solutions and integer programming solutions by CPLEX.

Keywords

container ship stowage planning stack minimization zero rehandle constructive heuristic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosino, D., Anghinolfi, D., Paolucci, M., Sciomachen, A.: A new three-step heuristic for the Master Bay Plan Problem. Maritime Economics & Logistics 11(1), 98–120 (2009)CrossRefGoogle Scholar
  2. 2.
    Avriel, M., Penn, M., Shpirer, N.: Container ship stowage problem: Complexity and connection to the coloring of circle graphs. Discrete Applied Mathematics 103(1), 271–279 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Avriel, M., Penn, M., Shpirer, N., Witteboon, S.: Stowage planning for container ships to reduce the number of shifts. Annals of Operations Research 76, 55–71 (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dubrovsky, O., Levitin, G., Penn, M.: A genetic algorithm with a compact solution encoding for the container ship stowage problem. Journal of Heuristics 8(6), 585–599 (2002)CrossRefGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The Complexity of Coloring Circular Arcs and Chords. SIAM Journal Algebraic and Discrete Methods 1(2), 216–227 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Gavril, F.: Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 3(3), 261–273 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Gümüş, M., Kaminsky, P., Tiemroth, E., Ayik, M.: A multi-stage decomposition heuristic for the container stowage problem. In: Proceedings of the MSOM Conference (2008)Google Scholar
  8. 8.
    Imai, A., Sasaki, K., Nishimura, E., Papadimitriou, S.: Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks. European Journal of Operational Research 171(2), 373–389 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Jensen, R.M.: On the complexity of container stowage planning. Tech. rep. (2010)Google Scholar
  10. 10.
    Salido, M.A., Sapena, O., Rodriguez, M., Barber, F.: A planning tool for minimizing reshuffles in container terminals. In: IEEE International Conference on Tools with Artificial Intelligence (2009)Google Scholar
  11. 11.
    Unger, W.: On the k-colouring of circle-graphs. In: Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 61–72. Springer, Heidelberg (1988)Google Scholar
  12. 12.
    Webster, W.C., Van Dyke, P.: Container loading: a container allocation model I and II: introduction, background, stragegy, conclusion. In: Computer-Aided Ship Design Engineering Summer Conference (1970)Google Scholar
  13. 13.
    Wilson, I.D., Roach, P.A.: Principles of combinatorial optimization applied to container-ship stowage planning. Journal of Heuristics 5(4), 403–418 (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ning Wang
    • 1
  • Zizhen Zhang
    • 2
  • Andrew Lim
    • 3
  1. 1.Department of Management SciencesCity University of Hong KongKowloon TongHong Kong
  2. 2.School of Mobile Information EngineeringSun Yat-sen UniversityZhuhaiChina
  3. 3.School of Management and EngineeringNanjing UniversityNanjingChina

Personalised recommendations