Behavior Modeling and Reasoning for Ambient Support: HCM-L Modeler

  • Fadi Al Machot
  • Heinrich C. Mayr
  • Judith Michael
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8482)


This paper introduces the architecture and the features of the HCM-L Modeler, a modeling tool supporting the Human Cognitive Modeling Language HCM-L and a comprehensive reasoning approach for Human Cognitive Models based on Answer Set Programming. The HCM-L tool has been developed using the ADOxx® meta modeling platform and following the principles of the Open Modeling Initiative: to provide open models that are formulated in an arbitrary, domain specific modeling language, which however is grounded in a common ontological framework, and therefore easily to translate in another language depending of the given purpose.


Modeling Tool Modeling Language Behavior Modeling Ontology Model Mapping Knowledge Base Ambient Assistance Reasoning Answer Set Programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steg, H., et al.: Europe Is Facing a Demographic Challenge. In: Ambient Assisted Living Offers Solutions. VDI/VDE/IT, Berlin (2006)Google Scholar
  2. 2.
    Lawton, M.P., Brody, E.M.: Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 9, 179–186 (1969)CrossRefGoogle Scholar
  3. 3.
    Michael, J., Grießer, A., Strobl, T., Mayr, H.C.: Cognitive Modeling and Support for Ambient Assistance. In: Mayr, H.C., Kop, C., Liddle, S., Ginige, A. (eds.) UNISON 2012. LNBIP, vol. 137, pp. 96–107. Springer, Heidelberg (2013)Google Scholar
  4. 4.
    Michael, J., Mayr, H.C.: Conceptual Modeling for Ambient Assistance. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 403–413. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Karagiannis, D., Grossmann, W., Höfferer, P.: Open Model Initiative: A Feasibility Study. Dpmt. of Knowledge Engineering, University of Vienna (2002),
  6. 6.
    Karagiannis, D.: Business Process Management: A Holistic Management Approach. In: Mayr, H.C., Kop, C., Liddle, S., Ginige, A. (eds.) UNISON 2012. LNBIP, vol. 137, pp. 1–12. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Kofod-Petersen, A., Mikalsen, M.: Context: Representation and Reasoning. Special Issue of the Revue d’Intelligence Artificielle on “Applying Context-Management” (2005)Google Scholar
  8. 8.
    Moody, D.: The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software Engineering. IEEE Trans. Software Eng. 35, 756–779 (2009)CrossRefGoogle Scholar
  9. 9.
    OMG Meta Object Facility (MOF) Core Specification Version 2.4.1: (last visited on September 29, 2013)
  10. 10.
    Schwarz, H., Ebert, J., Lemcke, J., Rahmani, T., Zivkovic, S.: Using expressive traceability relationships for ensuring consistent process model refinement. In: Proc. Int. Conf. on Engineering of Complex Computer Systems (ICECCS), pp. 183–192 (2010)Google Scholar
  11. 11.
    Fill, H.G., Karagiannis, D.: On the conceptualisation of modelling methods using the ADOxx meta modelling platform. Enterprise Modelling and Information Systems Architectures 8(1) (2013)Google Scholar
  12. 12.
    ADOxx® Software Engineer Tutorial Package: (last visited on September 29, 2013)
  13. 13.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press (2003) ISBN 978-0-521-81802-5Google Scholar
  14. 14.
    Turaga, R., et al.: Machine recognition of human activities: A survey. IEEE Transactions on Circuits and Systems for Video Technology 18(11), 1473–1488 (2003)CrossRefGoogle Scholar
  15. 15.
    Batsakis, S., Petrakis, E.G.M.: Sowl: Spatio-temporal representation, reasoning and querying over the semantic web. In: Proc. 6th Int. Conf. on Semantic Systems. ACM (2010)Google Scholar
  16. 16.
    King, B., et al.: Statistical reasoning in the behavioral sciences. (2011)Google Scholar
  17. 17.
    Batsakis, S., Petrakis, E.: SOWL: Spatio-temporal representation, reasoning and querying over the semantic web. In: Proc. 6th Int. Conf. on Semantic Systems. ACM (2010)Google Scholar
  18. 18.
    Sensoy, M., et al.: OWL-polar: A framework for semantic policy representation and reasoning. In: Web Semantics: Science, Services and Agents on the WWW 2012, pp. 148–160 (2012)Google Scholar
  19. 19.
    Gentner, D., et al.: Cognitive Approaches for the Semantic Web. Dagstuhl Reports 2.5, 93–116 (2012)Google Scholar
  20. 20.
    Al Machot, F., et al.: Real time complex event detection for resource-limited multimedia sensor networks. In: Proc. 8th IEEE Int. Conf. on Advanced Video and Signal-Based Surveillance (2011)Google Scholar
  21. 21.
    Gebser, M., et al.: A user’s guide to gringo, clasp, clingo, and iclingo (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fadi Al Machot
    • 1
  • Heinrich C. Mayr
    • 1
  • Judith Michael
    • 1
  1. 1.Application Engineering Research GroupAlpen-Adria-Universität KlagenfurtAustria

Personalised recommendations