A Three Stages to Implement Barriers in Bayesian-Based Bow Tie Diagram

  • Ahmed Badreddine
  • Mohamed Aymen Ben HajKacem
  • Nahla Ben Amor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8482)


The preventive and protective barriers in Bow tie diagrams are often defined by experts that ignore the real aspect of the system. Thus implementing barriers in Bow tie diagrams in automatic way remains a real challenge. This paper proposes a new approach to implement preventive and protective barriers. This approach is based on the multi-objective influence diagrams which are a graphical model to solve decision problems with multiple objectives.


Bow tie diagram Preventive barriers Protective barriers Multi-objective influence diagrams 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badreddine, A., Amor, N.B.: A Bayesian approach to construct bow tie diagrams for risk evaluation. Process Safety and Environmental Protection 91(3), 159–171 (2013)CrossRefGoogle Scholar
  2. 2.
    Cockshott, J.E.: Probability bow-ties: A transparent risk management tool. Process Safety and Environmental Protection 83(4), 307–316 (2005)CrossRefGoogle Scholar
  3. 3.
    Couronneau, J.C., Tripathi, A.: Implementation of the new approach of risk analysis in france. In: 41st International Petroleum Conference, Bratislava (2003)Google Scholar
  4. 4.
    Delvosalle, C., Fievez, C., Pipart, A., Debray, B.: ARAMIS project: A comprehensive methodology for the identification of reference accident scenarios in process industries. Journal of Hazardous Materials 130(3), 200–219 (2006)CrossRefGoogle Scholar
  5. 5.
    Diehl, M., Haimes, Y.Y.: Influence diagrams with multiple objectives and tradeoff analysis. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 34(3), 293–304 (2004)CrossRefGoogle Scholar
  6. 6.
    Availability, Reliability, SIL Whats the difference?,
  7. 7.
    Kumamoto, H., Henley, E.J.: Automated fault tree synthesis by disturbance analysis. Industrial Engineering Chemistry Fundamentals 25(2), 233–239 (1986)CrossRefGoogle Scholar
  8. 8.
    Saaty, T.L.: Axiomatic foundation of the analytic hierarchy process. Management science 32(7), 841–855 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Khakzad, N., Khan, F., Amyotte, P.: Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network. Process Safety and Environmental Protection 91(1), 46–53 (2013)CrossRefGoogle Scholar
  10. 10.
    Léger, A., Duval, C., Weber, P., Levrat, E., Farret, R.: Bayesian network modelling the risk analysis of complex socio technical systems. In: Workshop on Advanced Control and Diagnosis, ACD 2006 (2006)Google Scholar
  11. 11.
    Pearl, J.: Fusion, propagation, and structuring in belief networks. Artificial intelligence 29(3), 241–288 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Shachter, R.D.: Evaluating influence diagrams. Operations Research 34(6), 871–882 (1986)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 100, 9–34 (1999)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Sklet, S.: Comparison of some selected methods for accident investigation. Journal of Hazardous Materials 111(1), 29–37 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ahmed Badreddine
    • 1
  • Mohamed Aymen Ben HajKacem
    • 1
  • Nahla Ben Amor
    • 1
  1. 1.LARODECUniversité de Tunis, Institut Supérieur de Gestion de TunisLe BardoTunisia

Personalised recommendations