Performance Improvement of Set Partitioning Embedded Block Algorithm for Still Image Compression

  • Shu-Mei Guo
  • Yun-Wei Lee
  • Chih-Yuan Hsu
  • Shy-Jen Guo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8482)


The set partitioning embedded block (SPECK) algorithm is a fast and efficient technique for still image compression. In this paper, we propose a novel wavelet-based coding scheme, called prepartition SPECK (PSPECK), on the extension of SPECK. In order to improve the peak signal-to-noise ratio (PSNR) performance, we predict the significance of each set in the list of insignificant sets (LIS) by exploiting inter-subband correlation for reducing the bit budget. Furthermore, the proposed method can be combined with other quadtree-based coding techniques. Experimental results show that the proposed method outperforms SPECK, especially at high bit rates.


Discrete wavelet transform Image compression SPECK 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acharya, T., Tsai, P.S.: JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architecture. John Wiley & Sons, Inc., Hoboken (2004)CrossRefGoogle Scholar
  2. 2.
    Shapiro, J.M.: Embedded image coding using zerotrees of wavelets coefficients. IEEE Trans. Signal Processing 41, 3445–3462 (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    Said, A., Pearlman, W.A.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 6, 243–250 (1996)CrossRefGoogle Scholar
  4. 4.
    Taubman, D.: High performance scalable image compression with EBCOT. IEEE Transactions on Image Processing 9, 1158–1170 (2000)CrossRefGoogle Scholar
  5. 5.
    Pearlman, W.A., Islam, A., Nagaraj, N., Said, A.: Efficient, low-complexity image coding with a set-partitioning embedded block coder. IEEE Transactions on Circuits and Systems for Video Technology 14, 1219–1235 (2004)CrossRefGoogle Scholar
  6. 6.
    Pearlman, W.A.: Wavelet image compression. In: Synthesis Lectures on Image, Video, and Multimedia Processing (January 2013)Google Scholar
  7. 7.
    Chrysafis, C., Said, A., Drukarev, A., Islam, A., Pearlman, W.A.: SBHP—A low complexity wavelet coder. In: IEEE Int. Conf. Acoust., Speech Signal Processing (ICASSP), vol. 4, pp. 2035–2038 (June 2000)Google Scholar
  8. 8.
    Hsiang, S.T., Woods, J.W.: Embedded image coding using zeroblocks of subband/wavelet coefficients and context modeling. In: IEEE Int. Conf. Circuits and Systems (ISCAS), vol. 3, pp. 662–665 (May 2000)Google Scholar
  9. 9.
    Wheeler, F.W., Pearlman, W.A.: Combined spatial and subband block coding of images. In: IEEE Int. Conf. Image Processing (ICIP 2000), vol. 3, pp. 861–864 (September 2000)Google Scholar
  10. 10.
    Arora, H., Singh, P., Khan, E., Ghani, F.: Memory Efficient Image Coding with Embedded Zero Block-Tree Coder. In: Proc. IEEE Int. Conf. Multimedia and Expo 2004 (ICME 2004), vol. 1, pp. 679–682 (May 2004)Google Scholar
  11. 11.
    Yin, X.W., Fleury, M., Downton, A.C.: A structure for tree and block encoders. In: Proc. Int. Conf. on Pattern Recognition, ICPR 2004 (2004)Google Scholar
  12. 12.
    Moinuddin, A.A., Khan, E., Ghanbari, M.: Efficient algorithm for very low bit rate embedded image coding. IET Image Process. 2, 59–71 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Chandandeep, K., Sumit, B.: Listless Block Tree Coding with Discrete Wavelet Transform for Embedded Image Compression at Low Bit Rate. International Journal of Computer Applications 70, 32–36 (2013)Google Scholar
  14. 14.
    Cho, Y., Pearlman, W.A.: Quantifying the coding performance of zerotrees of wavelet coefficients: Degree-k zerotree. IEEE Transactions on Signal Processing 55, 2425–2431 (2007)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Said, A., Pearlman, W.A.: Low-complexity waveform coding via alphabet and sample-set partitioning. Proc. SPIE Visual Communications and Image Processing 3024, 25–37 (1997)CrossRefGoogle Scholar
  16. 16.
    Andrew, J.: A simple and efficient hierarchical image coder. In: Proc. IEEE Int. Conf. Image Processing (ICIP), vol. 3, pp. 658–661 (October 1997)Google Scholar
  17. 17.
    Yin, X.W., Fleury, M., Downton, A.C.: Prediction and adaptive scanning in block-set wavelet image coder. IEE Proc.-Vision. Image Signal Process. 153 (April 2006)Google Scholar
  18. 18.
    Guo, S.M., Wu, B.H., Tsai, J.S.H.: Improved set-partitioning embedded block scheme for still image compression. Journal of Electronic Imaging 17 (September 2008)Google Scholar
  19. 19.
    Guo, S.M., Chang, W.H., Tsai, J.S.H., Zhuang, B.L., Chen, L.C.: JPEG 2000 wavelet filter design framework with chaos evolutionary programming. Signal Processing 88, 2542–2553 (2008)CrossRefzbMATHGoogle Scholar
  20. 20.
    Yan, D.Z.C.X.F., Hu, S.X.: Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model. Computers and Chemical Engineering 27, 1393–1404 (2003)CrossRefGoogle Scholar
  21. 21.
    Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transform. IEEE Transactions on Imam Processing 1, 205–220 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shu-Mei Guo
    • 1
  • Yun-Wei Lee
    • 1
  • Chih-Yuan Hsu
    • 1
  • Shy-Jen Guo
    • 2
  1. 1.Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainanTaiwan, R.O.C.
  2. 2.Department of International TradeNational Taichung University of Science and TechnologyTaichungTaiwan, R.O.C.

Personalised recommendations