Advertisement

A Practical Approach for Parameter Identification with Limited Information

  • Lorenzo Zeni
  • Guangya Yang
  • Germán Claudio Tarnowski
  • Jacob Østergaard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8482)

Abstract

A practical parameter estimation procedure for a real excitation system is reported in this paper. The core algorithm is based on genetic algorithm (GA) which estimates the parameters of a real AC brushless excitation system with limited information about the system. Practical considerations are integrated in the estimation procedure to reduce the complexity of the problem. The effectiveness of the proposed technique is demonstrated via real measurements. Besides, it is seen that GA can converge to a satisfactory solution even when starting from large initial variation ranges of the estimated parameters. The whole methodology is described and the estimation strategy is presented in this paper.

Keywords

parameter identification genetic algorithm AC brushless excitation system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kundur, P., Balu, N., Lauby, M.: Power System Stability and Control. McGraw-Hill Professional (1994)Google Scholar
  2. 2.
    Ferguson, R., Herbst, H., Miller, R.: Analytical studies of the brushless excitation system. AIEE Transactions on Power Apparatus and Systems Part III 79, 1815–1821 (1959)CrossRefGoogle Scholar
  3. 3.
    Stigers, C., Hurley, J., Gorden, D., Callanan, D.: Field tests and simulation of a high initial response brushless excitation system. IEEE Transactions on Energy Conversion 1(1), 2–10 (1986)CrossRefGoogle Scholar
  4. 4.
    Witzke, R., Kresser, J., Dillard, J.: Influence of AC reactance on voltage regulation of six-phase rectifiers. AIEE Transactions 72, 244–253 (1953)Google Scholar
  5. 5.
    Lee, D.: IEEE recommended practice for excitation system models for power system stability studies (IEEE Std. 421.5–1992). Energy Development and Power Generation Committee of the IEEE Power Engineering Society (1992)Google Scholar
  6. 6.
    Sanchez-Gasca, J., Bridenbaugh, C., Bowler, C., Edmonds, J.: Trajectory sensitivity based identification of synchronous generator and excitation system parameters. IEEE Transactions on Power Systems 3(4), 1814–1822 (1988)CrossRefGoogle Scholar
  7. 7.
    Bujanowski, B., Pierre, J., Hietpas, S., Sharpe, T., Pierre, D.: A comparison of several system identification methods with application to power systems. In: Proceedings of the 36th Midwest Symposium on Circuits and Systems, pp. 64–67. IEEE (1993)Google Scholar
  8. 8.
    Liu, C., Hsu, Y., Jeng, L., Lin, C., Huang, C., Liu, A., Li, T.: Identification of exciter constants using a coherence function based weighted least squares approach. IEEE Transactions on Energy Conversion 8(3), 460–467 (1993)CrossRefGoogle Scholar
  9. 9.
    Shande, S., Shouzhen, Z., Bo, H.: Identification of parameters of synchronous machine and excitation system by online test. In: International Conference on Advances in Power System Control, Operation and Management, pp. 716–719. IET (2002)Google Scholar
  10. 10.
    Feng, S., Jianbo, X., Guoping, W., Yong-hong, X.: Study of brushless excitation system parameters estimation based on improved genetic algorithm. In: 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 915–919 (2008)Google Scholar
  11. 11.
    Puma, J., Colomé, D.: Parameters identification of excitation system models using genetic algorithms. IET Generation, Transmission & Distribution 2(3), 456–467 (2008)CrossRefGoogle Scholar
  12. 12.
    Sivanandam, S., Deepa, S.: Introduction to genetic algorithms. Springer (2007)Google Scholar
  13. 13.
    Goldberg, D.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley (1989)Google Scholar
  14. 14.
    Conn, A., Gould, N., Toint, P.: A globally convergent augmented Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds. Mathematics of Computation 66(217), 261–288 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Krause, P., Wasynczuk, O., Sudhoff, S.: Analysis of electric machinery and drive systems. IEEE Press (2002)Google Scholar
  16. 16.
    DIgSILENT, “Synchronous generator technical documentation,” DIgSILENT PowerFactory, Tech. Rep. (2007)Google Scholar
  17. 17.
    Andriollo, M., Martinelli, G., Morini, A.: Macchine elettriche rotanti. Ed. Libreria Cortina, Padova (2003)Google Scholar
  18. 18.
    Ogata, K.: Modern control engineering, 4th edn. Prentice Hall (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lorenzo Zeni
    • 1
  • Guangya Yang
    • 1
  • Germán Claudio Tarnowski
    • 1
  • Jacob Østergaard
    • 1
  1. 1.Department of Electrical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations