Advertisement

Deriving Processes of Information Mining Based on Semantic Nets and Frames

  • Sebastian Martins
  • Darío Rodríguez
  • Ramón García-Martínez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8482)

Abstract

There are information mining methodologies that emphasize the importance of planning for requirements elicitation along the entire project in an orderly, documented, consistent and traceable manner. However, given the characteristics of this type of project, the approach proposed by the classical requirements engineering is not applicable to the process of identifying the problem of information mining, nor allows to infer from the business domain modelling, the information mining process which solves it. This paper proposes an extension of semantic nets and frames to represent knowledge of the business domain, business problem and problem of information mining; and a methodology to derive the information mining process from the proposed knowledge representations is introduced.

Keywords

information mining requirement engineering deriving processes of information mining semantic nets frames 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    García-Martínez, R., Britos, P., Rodríguez, D.: Information Mining Processes Based on Intelligent Systems. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, J. (eds.) IEA/AIE 2013. LNCS (LNAI), vol. 7906, pp. 402–410. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Kononenko, I.Y., Cestnik, B.: Lymphography Data Set. UCI Machine Learning Repository (1986), http://archive.ics.uci.edu/ml/datasets/Lymphography (Último acceso 29 de Abril del 2008)
  3. 3.
    Michalski, R.: A Theory and Methodology of Inductive Learning. Artificial Intelligence 20, 111–161 (1983)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Quinlan, J.: Learning Logic Definitions from Relations. Machine Learning 5, 239–266 (1990)Google Scholar
  5. 5.
    Kohonen, T.: Self-Organizing Maps. Springer (1995)Google Scholar
  6. 6.
    Heckerman, D., Chickering, M., Geiger, D.: Learning bayesian networks, the combination of knowledge and statistical data. Machine Learning 20, 197–243 (1995)zbMATHGoogle Scholar
  7. 7.
    García-Martínez, R., Britos, P., Pesado, P., Bertone, R., Pollo-Cattaneo, F., Rodríguez, D., Pytel, P., Vanrell, J.: Towards an Information Mining Engineering. In: Software Engineering, Methods, Modeling and Teaching. Edited by University of Medellín, pp. 83–99 (2011) ISBN 978-958-8692-32-6Google Scholar
  8. 8.
    Britos, P., Dieste, O., García-Martínez, R.: Requirements Elicitation in Data Mining for Business Intelligence Projects. In: Avison, D., Kasper, G.M., Pernici, B., Ramos, I., Roode, D. (eds.) Advances in Information Systems Research, Education and Practice. IFIP International Federation for Information, vol. 274, pp. 139–150. Springer, Boston (2008)CrossRefGoogle Scholar
  9. 9.
    Chapman, P., Clinton, J., Keber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: CRISP-DM 1.0 Step by step BIguide. Edited by SPSS (2000)Google Scholar
  10. 10.
    Pyle, D.: Business Modeling and Business intelligence. Morgan Kaufmann (2003) ISBN 1-55860-653-XGoogle Scholar
  11. 11.
    SAS, SAS Enterprise Miner: SEMMA (2008), http://www.sas.com/technologies/analytics/datamining/miner/semma.html (last access November 24, 2013)
  12. 12.
    Minsky, M.: A framework for Representing Knowledge. AI-Memo 306. MIT Artificial Intelligence Laboratory (1974), http://hdl.handle.net/1721.1/6089
  13. 13.
    Sowa, J.: Semantic Networks. In: Shapiro, S. (ed.) Encyclopedia of Artificial intelligence, 2nd edn., Wiley & Sons (1992) ISBN 978-0471503071Google Scholar
  14. 14.
    Basso, D.Y., Vegega, C.: Case Study: Cell Phones. Business Intelligence Seminar Final Research Paper. Master Program on Information Systems Engineering. Graduate School, Regional School Buenos Aires, National Technological University, Argentine (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sebastian Martins
    • 1
    • 2
  • Darío Rodríguez
    • 1
    • 2
  • Ramón García-Martínez
    • 1
    • 2
  1. 1.Information Systems Research GroupNational University of LanusArgentina
  2. 2.PhD Program on Computer ScienceNational University of La PlataArgentina

Personalised recommendations