Advertisement

Matching Levels of Task Difficulty for Different Modes of Presentation in a VR Table Tennis Simulation by Using Assistance Functions and Regression Analysis

  • Daniel Pietschmann
  • Stephan Rusdorf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8525)

Abstract

UX is often compared between different systems or iterations of the same system. Especially when investigating human perception processes in virtual tasks and associated effects, experimental manipulation allows for better control of confounders. When manipulating modes of presentation, such as stereoscopy or visual perspective, the quality and quantity of available sensory cues is manipulated as well, resulting not only in different user experiences, but also in modified task difficulty. Increased difficulty and lower user task performance may lead to negative attributions that spill over to the evaluation of the system as a whole (halo effect). To avoid this, the task difficulty should remain unaltered. In highly dynamic virtual environments, the modification of difficulty with Fitts’ law may prove problematic, so an alternative is presented using curve fitting regression analyses of empirical data from a within-subjects experiment in a virtual table tennis simulation to calculate equal difficulty levels.

Keywords

Virtual Reality Performance User Experience Spatial Presence Table Tennis Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McMahan, R.P., Ragan, E.D., Leal, A., Beaton, R.J., Bowman, D.A.: Considerations for the use of commercial video games in controlled experiments. Entertainment Computing 2, 3–9 (2011)CrossRefGoogle Scholar
  2. 2.
    Bernhaupt, R. (ed.): Evaluating user experience in games. Concepts and Methods. Springer, London (2010)Google Scholar
  3. 3.
    Krahn, B.: User Experience: Konstruktdefinition und Entwicklung eines Erhebungsinstruments. [User Experience: Definition of the construct and development of measurements]. GUX | Gesellschaft für User Experience mbH, Bonn (2012)Google Scholar
  4. 4.
    Murray, J.: Hamlet on the holodeck: The future of narrative in cyberspace. MIT Press, Cambridge (1997)Google Scholar
  5. 5.
    Csikszentmihalyi, M.: Beyond Boredom and Anxiety: Experiencing Flow in Work and Play. Jossey-Bass, San Francisco (1975)Google Scholar
  6. 6.
    Agarwal, R., Karahanna, E.: Time flies when you’re having fun. Cognitive Absorption and beliefs about information technology use. MIS Quarterly 24, 665–994 (2000)CrossRefGoogle Scholar
  7. 7.
    Lombard, M., Ditton, T.: At the heart of it all: The concept of presence. Journal of Computer-Mediated Communication 3 (1997)Google Scholar
  8. 8.
    Minsky, M.: Telepresence. Omni 45–51 (June 1980)Google Scholar
  9. 9.
    Wirth, W., Hartmann, T., Böcking, S., Vorderer, P., Klimmt, C., Schramm, H., Saari, T., Laarni, J., Ravaja, N., Gouveia, F.R., Biocca, F., Sacau, A., Jäncke, L., Baumgartner, T., Jäncke, P.: A process model of the formation of spatial presence experiences. Media Psychology 9, 493–525 (2007)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Vorderer, P., Wirth, W., Saari, T., Gouveia, F.R., Biocca, F., Jäncke, F., Böcking, S., Hartmann, T., Klimmt, C., Schramm, H., Laarni, J., Ravaja, N., Gouveia, L.B., Rebeiro, N., Sacau, A., Baumgartner, T., Jäncke, P.: Constructing presence: Towards a two-level model of the formation of spatial presence. Unpublished report to the European Community, Project Presence: MEC (IST-2001-37661). Hannover, Munich, Helsinki, Porto, Zurich (2003)Google Scholar
  12. 12.
    Johnson-Laird, P.N.: Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge University Press, Combridge (1983)Google Scholar
  13. 13.
    McNamara, T.P.: Mental representations of spatial relations. Cognitive Psychology 18, 87–121 (1986)CrossRefGoogle Scholar
  14. 14.
    Posner, M.I., Snyder, C.R., Davidson, B.J.: Attention and the Detection of Signals. Journal of Experimental Psychology: General 109 (1980)Google Scholar
  15. 15.
    Gibson, J.J.: The ecological approach to visual perception. Houghton Mifflin, Boston (1979)Google Scholar
  16. 16.
    Surdick, R.T., Davis, E.T., King, R.A., Hodges, L.F.: The Perception of Distance in Simulated Visual Displays: A Comparison of the Effectiveness and Accuracy of Multiple Depth Cues Across Viewing Distances. Presence 513–531 (1997)Google Scholar
  17. 17.
    Bruner, J.S., Postman, L.: On the perception of incongruity: a paradigm. Journal of Personality 18, 206–223 (1949)CrossRefGoogle Scholar
  18. 18.
    Hassenzahl, M., Burmester, M., Koller, F.: AttrakDiff: A questionnaire for measuring perceived hedonistic and pragmatic quality. [AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität]. In: Mensch & Computer 2003. Interaktion in Bewegung, pp. 187-196. B.G. Teubner (2003)Google Scholar
  19. 19.
    Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experience questionnaire. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 63–76. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Vorderer, P., Wirth, W., Gouveia, F.R., Biocca, F., Saari, T., Jäncke, F., Böcking, S., Schramm, H., Gysbers, A., Hartmann, T., Klimmt, C., Laarni, J., Ravaja, N., Sacau, A., Baumgartner, T., Jäncke, P.: MEC spatial presence questionnaire (MEC-SPQ): Short documentation and instructions for application, Report to the European Community, Project Presence: MEC, IST-2001-37661 (2004)Google Scholar
  21. 21.
    Barfield, W., Rosenberg, C.: Judgments of azimuth and elevation as a function of monoscopic and binocular depth cues using a perspective display. Human Factors 37, 173–181 (1995)CrossRefGoogle Scholar
  22. 22.
    Kline, P.B., Witmer, B.G.: Distance perception in virtual environments: Effects of field of view and surface texture at near distances. In: 40th Annual Meeting on Human Factors and Ergonomics Society, pp. 112–116. Human Factors and Ergonomics Society (1996)Google Scholar
  23. 23.
    Loomis, J.M., Knapp, J.M.: Visual perception of egocentric distance in real and virtual environments. In: Hettinger, L.J., Haas, M.W. (eds.) Virtual and Adaptive Environments, pp. 21–46. Erlbaum, Mahwah (2003)Google Scholar
  24. 24.
    Rajae-Joordens, R.J.E., Langendijk, E., Wilinski, P., Heynderickx, I.: Added value of a multi-view auto-stereoscopic 3D display in gaming applications. In: 12th International Display Workshops in conjunction with Asia Display, Takamatsu, Japan (December 2005)Google Scholar
  25. 25.
    Skalski, P., Tamborini, R., Shelton, A., Buncher, M., Lindmark, P.: Mapping the road to fun: Natural video game controllers, presence, and game enjoyment. New Media & Society 13, 224–242 (2010)CrossRefGoogle Scholar
  26. 26.
    Takatalo, J., Kawai, T., Kaistinen, J., Nyman, G., Hakkinen, J.: User Experience in 3D Stereoscopic Games. Media Psychology 14 (2011)Google Scholar
  27. 27.
    Elson, M., van Looy, J., Vermeulen, L., Van den Bosch, F.: In: the mind’s: No Evidence for an effect of stereoscopic 3D on user experience of digital games. In: ECREA ECC 2012, preconference Experiencing Digital Games: Use, Effects & Culture of Gaming, Istanbul, Turkey (September 2012)Google Scholar
  28. 28.
    Tamborini, R., Eastin, M.S., Skalski, P., Lachlan, K., Fediuk, T.A., Brady, R.: Violent Virtual Video Games and Hostile Thoughts. Journal of Broadcasting & Electronic Media 48, 335–357 (2004)Google Scholar
  29. 29.
    Persky, S., Blascovich, J.: Immersive Virtual Environments versus traditional platforms: Effects of violent and nonviolent video game play. Media Psychology 10, 135–156 (2007)Google Scholar
  30. 30.
    Hartig, J., Frey, A., Ketzel, A.: Modifikation des Computerspiels Quake III Arena zur Durchführung psychologischer Experimente in einer virtuellen 3D-Umgebung. [Modification of the video game Quake III Arean for psychological experiments in a virtual 3D environment]. Zeitschrift für Medienpsychologie 9, 493–525 (2003)Google Scholar
  31. 31.
    Barfield, W., Hendrix, C., Bystrom, K.-E.: Effects of Stereopsis and Head Tracking on Performance Using Desktop Virtual Environment Displays. Presence: Teleoperators and Virtual Environments 8, 237–240 (1999)CrossRefGoogle Scholar
  32. 32.
    Chen, J.Y.C., Thropp, J.E.: Review of Low Frame Rate Effects on Human Performance. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 37, 1063–1076 (2007)CrossRefGoogle Scholar
  33. 33.
    Fu, M.J., Hershberger, A.D., Sano, K., Cavusoglu, M.C.: Effect of Visuomotor Colocation on 3D Fitts’ Task Performance in Physical and Virtual Environments. Presence-Teleop Virt. 21, 305–320 (2012)CrossRefGoogle Scholar
  34. 34.
    Zhang, Y., Fernando, T., Xiao, H.N., Travis, A.R.L.: Evaluation of auditory and visual feedback on task performance in a virtual assembly environment. Presence-Teleop Virt. 15, 613–626 (2006)CrossRefGoogle Scholar
  35. 35.
    Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47, 381–391 (1954)CrossRefGoogle Scholar
  36. 36.
    MacKenzie, I.S., Zhang, S.X.: The design and evaluation of a high-performance soft keyboard. In: ACM Conference on Human Factors in Computing Systems - CHI 1999, pp. 25–31. ACM (1999)Google Scholar
  37. 37.
    Watson, B.A., Walker, N., Woytiuk, P., Ribarsky, W.R.: Maintaining usability during 3D placement despite delay. In: IEEE Virtual Reality Conference 2003. IEEE Computer Society (2003)Google Scholar
  38. 38.
    Accot, J., Zhai, S.: Beyond Fitts’ Law: Models for trajectory-based HCI tasks. In: ACM SIGCHI Conference on Human Factors in Computing Systems, CHI 1997, pp. 295–302. ACM (1997)Google Scholar
  39. 39.
    Zhai, S., Accot, J., Woltjer, R.: Human Action Laws in Electronic Virtual Worlds: An Empirical Study of Path Steering Performance in VR. Presence 13, 113–127 (2004)CrossRefGoogle Scholar
  40. 40.
    Rusdorf, S., Brunnett, G.: Real Time Tracking of High Movements in the Context of a Table Tennis Application. In: ACM Symposium on Virtual Reality Software and Technology 2005. ACM (2005)Google Scholar
  41. 41.
    Rusdorf, S., Brunnett, G., Lorenz, M., Winkler, T.: Real Time Interaction with a Humanoid Avatar in an Immersive Table Tennis Simulation. IEEE Transactions on Visualization and Computer Graphics 13, 15–25 (2007)CrossRefGoogle Scholar
  42. 42.
    Lorenz, M., Rusdorf, S., Woelk, S., Brunnett, G.: Virtualiti3D (V3D): A system independent, real time-animated, three dimensional graphical user interface. In: IASTED Int. Conf. on Visualization, Imaging, and Image Processing, VIIP 2003, pp. 955–960. ACTA Press (2003)Google Scholar
  43. 43.
    Klimmt, C., Hartmann, T.: Effectance, self-efficacy, and the motivation to play video games. In: Vorderer, P., Bryant, J. (eds.) Playing Video Games: Motives, Responses, and Consequences, pp. 132–145. Lawrence Erlbaum, Mahwah (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel Pietschmann
    • 1
  • Stephan Rusdorf
    • 2
  1. 1.Institute for Media ResearchChemnitz University of TechnologyChemnitzGermany
  2. 2.Department of Computer ScienceChemnitz University of TechnologyChemnitzGermany

Personalised recommendations