Activity Recognition in Assistive Environments: The STHENOS Approach

  • Ilias Maglogiannis
  • Kostas Delibasis
  • Dimitrios Kosmopoulos
  • Theodosios Goudas
  • Charalampos Doukas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8515)


The paper presents the research conducted within the framework of the STHENOS project (, which aims at the development of methodologies and systems for assistive environments. The proposed systems and applications are capable of recognizing the human activities and assist disabled or elder persons in performing every day activities and detect abnormal situations such as a fall or long periods of inactivity. The paper includes the technical details of the proposed activity recognition methodology using fisheye video cameras and wearable sensors. Initial results have proven the feasibility of the adopted approaches and the efficiency of the implemented system.


Assistive Environments Pervasive Healthcare Activity Recognition Fisheye video Wearable sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maglogiannis, I., Vouyioukas, D., Aggelopoulos, C.: Face Detection and Recognition of Human Emotion Using Markov Random Fields. Personal and Ubiquitous Computing 13(1), 95–101 (2009), doi:10.1007/s00779-007-0165-0Google Scholar
  2. 2.
    Makedon, F., Le, Z., Huang, H., Becker, E., Kosmopoulos, D.: An Event Driven Framework for Assistive CPS Environments. In: ACM SIGBED Review - Special Issue on the 2nd Joint Workshop on High Confidence Medical Devices, Software, and Systems (HCMDSS) and Medical Device Plug-and-Play (MD PnP) Interoperability, vol. 6(2), pp. 28–36 (2009)Google Scholar
  3. 3.
    Makris, A., Kosmopoulos, D., Perantonis, S., Theodoridism, S.: A Hierarchical Feature Fusion Framework for Adaptive Visual Tracking. Image and Vision Computing 29(9), 594–606 (2011)CrossRefGoogle Scholar
  4. 4.
    Kosmopoulos, D., Doulamis, A., Makris, A., Doulamis, N., Chatzis, S., Middleton, S.: Vision-based production of personalised video. Signal Processing: Image Communication 24(3), 158–176 (2009)Google Scholar
  5. 5.
    Kosmopoulos, D., Chatzis, S.: Robust Visual Behavior Recognition. IEEE Signal Processing Magazine 27(5), 34–45 (2010)CrossRefGoogle Scholar
  6. 6.
    Antonakaki, P., Kosmopoulos, D., Perantonis, S.: Detecting Abnormal Human Behavior using Multiple Cameras. Signal Processing 89(9), 1723–1738 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Delibasis, K., Goudas, T., Plagianakos, V., Maglogiannis, I.: Fisheye Camera Modeling for Human Segmentation Refinement in Indoor Videos. In: Proc. of 6th ACM International Conference on Pervasive Technologies Related to Assistive Environments (PETRA 2013). ACM, Rhodes (2013), doi:10.1145/2504335.2504375Google Scholar
  8. 8.
    Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley (1989) ISBN:0201157675Google Scholar
  9. 9.
    Doukas, C., Maglogiannis, I.: Emergency Fall Incidents Detection in Assisted Living Environments Utilizing Motion, Sound and Visual Perceptual Component. IEEE Transactions on Information Technology in Biomedicine 15(2), 277–289 (2011)CrossRefGoogle Scholar
  10. 10.
    Kohavi, R.: Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid. In: Second International Conference on Knowledge Discovery and Data Mining, pp. 202–207 (1996)Google Scholar
  11. 11.
    Kosmopoulos, D.I., Doliotis, P., Athitsos, V., Maglogiannis, I.: Fusion of color and depth video for human behavior recognition in an assistive environment. In: Streitz, N., Stephanidis, C. (eds.) DAPI 2013. LNCS, vol. 8028, pp. 42–51. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ilias Maglogiannis
    • 1
  • Kostas Delibasis
    • 2
  • Dimitrios Kosmopoulos
    • 3
  • Theodosios Goudas
    • 1
  • Charalampos Doukas
    • 4
  1. 1.Dept. of Digital SystemsUniversity of PiraeusGreece
  2. 2.Dept. of Computer Science and Biomedical InformaticsGreece
  3. 3.Dept. of Informatics EngineeringTEI of CreteGreece
  4. 4.Dept. of Information and Communication Systems EngineeringGreece

Personalised recommendations