Advertisement

Neurological Disorders and Publication Abstracts Follow Elements of Social Network Patterns when Indexed Using Ontology Tree-Based Key Term Search

  • Anand Kulanthaivel
  • Robert P. Light
  • Katy Börner
  • Chin Hua Kong
  • Josette F. Jones
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8515)

Abstract

Disorders of the Central Nervous System (CNS) are worldwide causes of morbidity and mortality. In order to further investigate the nature of the CNS research, we generate from an initial reference a controlled vocabulary of CNS disorder-related terms and ontological tree structure for this vocabulary, and then apply the vocabulary in an analysis of the past ten years of abstracts (N = 10,488) from a major neuroscience journal. Using literal search methodology with our terminology tree, we find over 5,200 relationships between abstracts and clinical diagnostic topics. After generating a network graph of these document-topic relationships, we find that this network graph contains characteristics of document-author and other human social networks, including evidence of scale-free and power law-like node distributions. However, we also found qualitative evidence for Z-normal-type (albeit logarithmically skewed) distributions within disorder popularity. Lastly, we discuss potential consumer-centered as well as clinic-centered uses for our ontology and search methodology.

Keywords

Ontology information retrieval neuroscience networks indexing knowledge gaps semantic medicine translational medicine knowledge discovery neurology psychiatry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skusa, A., Ruegg, A., Koehler, J.: Extraction of Biological Interaction Networks From Scientific Literature. Briefings in Bioinformatics 6(3), 264–276 (2005)CrossRefGoogle Scholar
  2. 2.
    Spasic, I., Ananiadous, S., McNaught, J., Kumar, A.: Text Mining and Ontologies in Biomedicine: Making Sense of Raw Text. Briefings in Bioinformatics 6(3), 239–251 (2005)CrossRefGoogle Scholar
  3. 3.
    Yan, E., Ding, Y., Milojevic, S., Sugimoto, C.R.: Topics in Dynamic Research Communities: An Exploratory Story for the Field of Information Retrieval. Journal of Informetrics 6(1), 140–153 (2012)CrossRefGoogle Scholar
  4. 4.
    Newman, M.E.J.: Power Laws, Pareto Distributions, and Zipf’s Law. Contemporary Physics 46(5), 323–351 (2005)CrossRefGoogle Scholar
  5. 5.
    Barabasi, A.L., Erzsebet, R., Vicsek, T.: Deterministic Scale-Free Networks. Physica Acta 299, 559–564 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Milojevic, S.: Power-Law Distributions in Information Science – Making the Case for Logarithmic Binning. Journal of the American Society for Information Science and Technology 61(12), 2417–2425 (2010)CrossRefGoogle Scholar
  7. 7.
    Frasco, G.F., Sun, J., Rozenfeld, H.D., Ben-Avraham, D.: Spatially-Distributed Social Complex Networks. Physical Review X 4(011008) (2014)Google Scholar
  8. 8.
    Brain Research (Journal). Information retrieved from http://journals.elsevier.com/brain-research/ (December 19, 2013)
  9. 9.
    Merck & Co., Inc.: Neurological Disorders (Section). In The Merck Manual of Diagnosis and Therapy for Professionals (2013-2014), http://www.merckmanuals.com/professional/neurologic_disorders.html (August 9, 2013) (retrieved)
  10. 10.
    Merck & Co., Inc.: Psychiatric Disorders (Section). In The Merck Manual of Diagnosis and Therapy for Professionals (2013-2014), http://www.merckmanuals.com/professional/psychiatric_disorders.html (August 9, 2013) (retrieved)
  11. 11.
    United States Government, National Institutes of Health, National Library of Medicine (n.d.-2014): PubMed (Database Website), http://www.pubmed.gov/ (n.d.) (retrieved )
  12. 12.
    Eclipse Foundation, Inc.: Eclipse IDE for Java EE Developers (Software), http://www.eclipse.org/downloads/ (retrieved )
  13. 13.
    Sci2 Team: Sci2 Tool (Software) (2009), http://sci2.cns.iu.edu/ (retrieved )
  14. 14.
    Martin, S., Brown, W.M., Klavans, R., Boyack, K.W.: DrL: Distributed Recursive (Graph) Layout. SAND Reports 2936, 1–10 (2008)Google Scholar
  15. 15.
    Excel 2014 (Software). Microsoft Corporation (Redmond/Seattle, Washington), http://www.microsoft.com/ (retrieved )
  16. 16.
    SAS 9.4 (Software). SAS Institute (Cary, North Carolina)Google Scholar
  17. 17.
    Milojevic, S., Sugimoto, C.R., Yan, E., Ding, Y.: The Cognitive Structure of Library and Information Science: Analysis of Article Title Words. Journal of the American Society for Information Science and Technology 62(10), 1933–1953 (2011)CrossRefGoogle Scholar
  18. 18.
    Smith-Jentsch, K.A., Cannon-Bowers, J.A., Tannenbaum, S.I., Salas, E.: Guided Team Self-Correction: Impacts on Team Mental Models, Processes, and Effectiveness. Small Group Research 39(3), 303–327 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anand Kulanthaivel
    • 1
    • 2
  • Robert P. Light
    • 1
  • Katy Börner
    • 1
  • Chin Hua Kong
    • 1
  • Josette F. Jones
    • 2
  1. 1.Cyberinfrastructure for Network Science, Information & Library ScienceIndiana University BloomingtonBloomingtonUSA
  2. 2.BioHealth InformaticsIndiana University-Purdue University IndianapolisIndianapolisUSA

Personalised recommendations