Personalized Hand Pose and Gesture Recognition System for the Elderly

  • Mahsa Teimourikia
  • Hassan Saidinejad
  • Sara Comai
  • Fabio Salice
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8515)


Elderly population is growing all over the globe. Novel human-computer interaction systems and techniques are required to fill the gap between elderly reduced physical and cognitive capabilities and the smooth usage of technological artefacts densely populating our environments. Gesture-based interfaces are potentially more natural, intuitive, and direct. In this paper, we propose a personalized hand pose and gesture recognition system (called HANDY) supporting personalized gestures and we report the results of two experiments with both younger and older participants. Our results show that by sufficiently training our system we can get similar accuracies for both younger and older users. This means that our gesture recognition system can accommodate the limitations of an ageing-hand even in presence of hand issues like arthritis or hand tremor.


gestural interaction gesture recognition system elderly 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    UN: Department of economic and social affairs (desa) world population ageing 2009. DESA, United Nations, New York (2009)Google Scholar
  2. 2.
    UN: Review and appraisal of the progress made in achieving the goals and objectives of the programme of action of the international conference on population and development, 1999 report. United Nations publication, Sales No. E.99.XIII.16 (1999)Google Scholar
  3. 3.
    Kalache, A., Gatti, A.: Active ageing: a policy framework. Advances in gerontology= Uspekhi gerontologii/Rossiiskaia akademiia nauk. Gerontologicheskoe Obshchestvo 11, 7–18 (2002)Google Scholar
  4. 4.
    Malanowski, N., Ozcivelek, R., Cabrera, M.: Active ageing and independent living services: the role of information and communication technology. European Communitiy (2008)Google Scholar
  5. 5.
    Rautaray, S.S., Agrawal, A.: Vision based hand gesture recognition for human computer interaction: a survey. Artificial Intelligence Review, 1–54 (2012)Google Scholar
  6. 6.
    Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose estimation: A review. Computer Vision and Image Understanding 108(1), 52–73 (2007)CrossRefGoogle Scholar
  7. 7.
    Karam, M.: PhD Thesis: A framework for research and design of gesture-based human-computer interactions. PhD thesis, University of Southampton (2006)Google Scholar
  8. 8.
    Wachs, J.P., Kölsch, M., Stern, H., Edan, Y.: Vision-based hand-gesture applications. Communications of the ACM 54(2), 60–71 (2011)CrossRefGoogle Scholar
  9. 9.
    Fisk, A.D., Rogers, W.A., Charness, N., Czaja, S.J., Sharit, J.: Designing for older adults: Principles and creative human factors approaches. CRC press (2012)Google Scholar
  10. 10.
    Ranganathan, V.K., Siemionow, V., Sahgal, V., Yue, G.H.: Effects of aging on hand function. Journal of the American Geriatrics Society 49(11), 1478–1484 (2001)CrossRefGoogle Scholar
  11. 11.
    Stößel, C., Wandke, H., Blessing, L.: Gestural interfaces for elderly users: help or hindrance? In: Kopp, S., Wachsmuth, I. (eds.) GW 2009. LNCS, vol. 5934, pp. 269–280. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Murthy, G., Jadon, R.: A review of vision based hand gestures recognition. International Journal of Information Technology and Knowledge Management 2(2), 405–410 (2009)Google Scholar
  13. 13.
    Camastra, F., De Felice, D.: LVQ-based hand gesture recognition using a data glove. In: Apolloni, B., Bassis, S., Esposito, A., Morabito, F.C. (eds.) Neural Nets and Surroundings. Smart Innovation, Systems and Technologies, vol. 19, pp. 159–168. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Garg, P., Aggarwal, N., Sofat, S.: Vision based hand gesture recognition. World Academy of Science, Engineering and Technology 49(1), 972–977 (2009)Google Scholar
  15. 15.
    Zhu, H.M., Pun, C.M.: Real-time hand gesture recognition from depth image sequences. In: 9th Int. Conf. Computer Graphics, Imaging and Visualization (2012)Google Scholar
  16. 16.
    Liu, X., Fujimura, K.: Hand gesture recognition using depth data. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 529–534. IEEE (2004)Google Scholar
  17. 17.
    Binh, N.D., Shuichi, E., Ejima, T.: Real-time hand tracking and gesture recognition system. In: Proc. GVIP, pp. 19–21 (2005)Google Scholar
  18. 18.
    Chen, F.S., Fu, C.M., Huang, C.L.: Hand gesture recognition using a real-time tracking method and hidden markov models. Image and Vision Computing 21(8), 745–758 (2003)CrossRefGoogle Scholar
  19. 19.
    Starner, T., Weaver, J., Pentland, A.: Real-time american sign language recognition using desk and wearable computer based video. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(12), 1371–1375 (1998)CrossRefGoogle Scholar
  20. 20.
    Molina, J., et al.: Real-time user independent hand gesture recognition from time-of-flight camera video using static and dynamic models. Machine Vision and Applications 24(1), 187–204 (2013)CrossRefGoogle Scholar
  21. 21.
    Baudel, T., Beaudouin-Lafon, M.: Charade: Remote control of objects using free-hand gestures. Commun. ACM 36(7), 28–35 (1993)CrossRefGoogle Scholar
  22. 22.
    Freeman, D., Vennelakanti, R., Madhvanath, S.: Freehand pose-based gestural interaction: Studies and implications for interface design. In: IHCI, pp. 1–6 (2012)Google Scholar
  23. 23.
    Lee, S.S., Chae, J., Kim, H., Lim, Y.K., Lee, K.P.: Towards more natural digital content manipulation via user freehand gestural interaction in a living room. In: Proc. UbiComp 2013, pp. 617–626 (2013)Google Scholar
  24. 24.
    Norman, D.A.: Natural user interfaces are not natural. Interactions 17(3), 6–10 (2010)CrossRefGoogle Scholar
  25. 25.
    Malizia, A., Bellucci, A.: The artificiality of natural user interfaces. Commun. ACM 55(3), 36–38 (2012)CrossRefGoogle Scholar
  26. 26.
    Lee, T.-Y., Kim, H.-H., Park, K.-H.: Gesture-based interface using baby signs for the elderly and people with mobility impairment in a smart house environment. In: Lee, Y., Bien, Z.Z., Mokhtari, M., Kim, J.T., Park, M., Kim, J., Lee, H., Khalil, I. (eds.) ICOST 2010. LNCS, vol. 6159, pp. 234–237. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Sunwoo, J., Yuen, W., Lutteroth, C., Wünsche, B.: Mobile games for elderly healthcare. In: Proceedings of the 11th International Conference of the NZ Chapter of the ACM Special Interest Group on Human-Computer Interaction, pp. 73–76. ACM (2010)Google Scholar
  28. 28.
    Gerling, K., Livingston, I., Nacke, L., Mandryk, R.: Full-body motion-based game interaction for older adults. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems, pp. 1873–1882. ACM (2012)Google Scholar
  29. 29.
    Anastasiou, D., Jian, C., Zhekova, D.: Speech and gesture interaction in an ambient assisted living lab. In: Proceedings of the 1st Workshop on Speech and Multimodal Interaction in Assistive Environments, pp. 18–27. Association for Computational Linguistics (2012)Google Scholar
  30. 30.
    Teimourikia, M., Saidinejad, H., Comai, S.: Handy: A configurable gesture recognition system. In: 7th Int. Conf. on ACHI (2014) (accepted for publication)Google Scholar
  31. 31.
    Aurenhammer, F.: Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR) 23(3), 345–405 (1991)CrossRefGoogle Scholar
  32. 32.
    Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, Seattle, WA, vol. 10, pp. 359–370 (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mahsa Teimourikia
    • 1
  • Hassan Saidinejad
    • 1
  • Sara Comai
    • 1
  • Fabio Salice
    • 1
  1. 1.Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanItaly

Personalised recommendations