Semantic Information Extraction on Domain Specific Data Sheets

  • Kai Barkschat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8465)


The development of information retrieval and extraction systems is still a challenging task. The occurrence of natural language limits the application of existing approaches. Therefore the approach of a new framework which combines natural language processing and semantic web technology is discussed.

This paper focuses on ontology based knowledge modelling for semantic data extraction. Therefore, semantic verification techniques which can be used to improve the extraction are introduced.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taniar, D., Chen, L. (eds.): Integrations of Data Warehousing, Data Mining and Database Technologies - Innovative Approaches. Information Science Reference (2011)Google Scholar
  2. 2.
    Wimalasuriya, D.C., Dou, D.: Ontology-based Information Extraction: An Introduction and a Survey of Current Approaches. Journal of Information Science 36(3), 306–323 (2010)CrossRefGoogle Scholar
  3. 3.
    Tao, C., Song, D., Sharma, D.K., Chute, C.G.: Semantator: Semantic annotator for converting biomedical text to linked data. Journal of Biomedical Informatics 46(5), 882–893Google Scholar
  4. 4.
    Stanford Center for Biomedical Informatics Research: The Protégé Ontology Editor and Knowledge Acquisition System.
  5. 5.
    Zahedi, M.H., Kahani, M.: SREC: Discourse-level semantic relation extraction from text.. Neural Computing and Applications 23(6), 1573–1582 (2013)CrossRefGoogle Scholar
  6. 6.
    Mitchell, A., Strassel, S., Przybocki, M., Davis, J., Doddington, G., Grishman, R., Meyers, A., Brunstein, A., Ferro, L., Sundheim, B.: Ace-2 version 1.0. Linguistic Data Consortium, Philadelphia (2003)Google Scholar
  7. 7.
    Sbattella, L., Tedesco, R.: A novel semantic information retrieval system based on a three-level domain model.. Journal of Systems and Software 86(5), 1426–1452 (2013)CrossRefGoogle Scholar
  8. 8.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. Language, Speech and Communication. MIT Press (1998)Google Scholar
  9. 9.
    Rusu, D., Dali, L., Fortuna, B., Grobelnik, M., Mladenic, D.: Triplet extraction from sentences. In: Proceedings of the 10th International Multiconference ”Information Society - IS 2007”, vol. A, pp. 218–222 (2007)Google Scholar
  10. 10.
    RDF Primer: W3C Recommendation (February 10, 2004),
  11. 11.
    OWL Web Ontology Language Overview: W3C Recommendation (February 10, 2004),
  12. 12.
    Zhang, S., Elhadad, N.: Unsupervised biomedical named entity recognition: Experiments with clinical and biological texts. Journal of Biomedical Informatics 46(6), 1088–1098 (2013)CrossRefGoogle Scholar
  13. 13.
    Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., Chanona-Hernández, L.: Syntactic N-grams as machine learning features for natural language processing. Expert Systems with Applications 41, 853–860 (2014)CrossRefGoogle Scholar
  14. 14.
    The Apache Software Foundation: Apache OpenNLP,
  15. 15.
    The Stanford Natural Language Processing Group: Stanford NLP,
  16. 16.
    Rodriguez-muro, M., Lubyte, L., Calvanese, D.: Realizing ontology based data access: A plug-in for Protégé. In: Proceedings of the Workshop on Information Integration Methods, Architectures, and Systems (IIMAS 2008), pp. 286–289. IEEE Computer Society Press (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kai Barkschat
    • 1
  1. 1.FH AachenUniversity of Applied ScienceGermany

Personalised recommendations