Riemann Geometric Color-Weak Compensation for Individual Observers

  • Takanori Kojima
  • Rika Mochizuki
  • Reiner Lenz
  • Jinhui Chao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8514)


We extend a method for color weak compensation based on the criterion of preservation of subjective color differences between color normal and color weak observers presented in [2]. We introduce a new algorithm for color weak compensation using local affine maps between color spaces of color normal and color weak observers. We show how to estimate the local affine map and how to determine correspondences between the origins of local coordinates in color spaces of color normal and color weak observers. We also describe a new database of measured color discrimination threshold data. The new measurements are obtained at different lightness levels in CIELUV space. They are measured for color normal and color weak observers. The algorithms are implemented and evaluated using the Semantic Differential method.


Universal Design Color-barrier-free Technology Color-weak Compensation Riemann geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chao, J., Osugi, I., Suzuki, M.: On definitions and construction of uniform color space. In: Proceedings of The Second European Conference on Colour in Graphics, Imaging and Vision (CGIV 2004), pp. 55–60 (2004)Google Scholar
  2. 2.
    Mochizuki, R., Nakamura, T., Chao, J., Lenz, R.: Color-weak correction by discrimination threshold matching. In: Proceedings of CGIV 2008, 4th European Conference on Color in Graphics, Imaging, and Vision, pp. 208–213 (2008)Google Scholar
  3. 3.
    Chao, J., Lenz, R., Matsumoto, D., Nakamura, T.: Riemann geometry for color characterization and mapping. In: Proceedings of CGIV 2008, Proceedings of 4th European Conference on Color in Graphics, Imaging, and Vision, pp. 277–282 (2008)Google Scholar
  4. 4.
    Mochizuki, R., Oshima, S., Lenz, R., Chao, J.: Exact compensation of color-weakness with discrimination threshold matching. In: Stephanidis, C. (ed.) Universal Access in HCI, Part IV, HCII 2011. LNCS, vol. 6768, pp. 155–164. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Oshima, S., Mochizuki, R., Lenz, R., Chao, J.: Color-Weakness Compensation using Riemann Normal Coordinates. In: Proc. of ISM 2012, IEEE Int. Symp. on Multimedia, pp. 175–178 (2012)Google Scholar
  6. 6.
    Ohshima, S., Mochizuki, R., Chao, J., Lenz, R.: Color Reproduction Using Riemann Normal Coordinates. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2009. LNCS, vol. 5646, pp. 140–149. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Lenz, R., Mochizuki, R., Chao, J.: Iwasawa Decomposition and Computational Riemannian Geometry. In: Proceedings of ICPR 2010, 2010 International Conference on Pattern Recognition, pp. 4472–4475 (2010)Google Scholar
  8. 8.
    Lenz, R., Oshima, S., Mochizuki, R., Chao, J.: An Invariant Metric on the Manifold of Second Order Moments. In: Proceedings ICCV2009, IEEE International Conference on Computer Vision, IEEE Color and Reflectance in Imaging and Computer Vision Workshop 2009 - CRICV, pp. 1923–1930 (2009)Google Scholar
  9. 9.
    Osgood, C.E.: The Measurement of Meaning (1957)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Takanori Kojima
    • 1
  • Rika Mochizuki
    • 2
  • Reiner Lenz
    • 3
  • Jinhui Chao
    • 1
  1. 1.Chuo UniversityBunkyo-kuJapan
  2. 2.NTT Cyber Solutions LaboratoriesJapan
  3. 3.Linköping UniversityNorrköpingSweden

Personalised recommendations