Abstract
Brain Computer Interface (BCI) technology can provide users lacking voluntary muscle control with an augmentative communication channel, based on the interpretation of her/his brain activity. Such technologies, combined with AAL (Ambient Assisted Living) systems, can potentially have a great impact on daily living, extending the scope of the ageing at home paradigm also to individuals affected by severe motor impairments, for whom interacting with the environment is troublesome. In this paper, a low cost BCI development platform is presented; it consists of a customized EEG acquisition unit and a Matlab-based signal processing environment. An application example using SSVEP paradigm is discussed.
Keywords
- Brain Computer Interface (BCI)
- Ambient Assisted Living (AAL)
- Daily Living
Chapter PDF
References
Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)
del R. Millán, J., Rupp, R., Müller-Putz, G.R., et al.: Combining Brain–Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges. Frontiers in Neuroscience 4(161) (September 2010)
Grossi, F., Bianchi, V., Matrella, G., De Munari, I., Ciampolini, P.: An Assistive Home Automation and Monitoring System. In: ICCE 2008, pp. 1–2 (January 2008)
Bianchi, V., Grossi, F., De Munari, I., Ciampolini, P.: Multi Sensor Assistant: A Multisensor Wearable Device for Ambient Assisted Living. Journal of Medical Imaging and Health Informatics 2, 70–75 (2012)
Mora, N., Bianchi, V., De Munari, I., Ciampolini, P.: Design for a low cost brain-computer interface for environmental and home control. Gerontechnology 11(2) (2012)
Mora, N., Bianchi, V., De Munari, I., Ciampolini, P.: A Low Cost Brain Computer Interface Platform for AAL Applications. In: AAATE 2013 Conf. Proc., Vilamoura, Portugal, September 19-22 (2013)
Leuthardt, E.C., Gaona, C., Sharma, M., Szrama, N., Roland, J., Freudenberg, Z., Solis, J., Breshears, J., Schalk, G.: Using the electrocorticographic speech network to control a brain–computer interface in humans. J. Neural Eng. 8(3) (2011)
Moran, D.: Evolution of brain–computer interface: action potentials, local field potentials and electrocorticograms. Current Opinion in Neurobiology 20(6), 741–745 (2010)
Sun, Y., Huang, S., Oresko, J.J., Cheng, A.C.: Programmable Neural Processing on a Smartdust for Brain-Computer Interfaces. IEEE Trans. Biomed. Circuits Syst. 4(5), 265–273 (2010)
Shahrokhi, F., Abdelhalim, K., Serletis, D., Carlen, P.L., Genov, R.: The 128-Channel Fully Differential Digital Integrated Neural Recording and Stimulation Interface. IEEE Trans. Biomed. Circuits Syst. 4(3), 149–161 (2010)
Andersson, P., Viergever, M.A., Pluim, J., Ramsey, N.F., Siero, J.: fMRI based BCI control using spatial visual attention at 7T. In: 4th International IEEE/EMBS Conference on Neural Engineering, NER 2009, April 9-May 2 (2009)
Sitaram, R., Lee, S., Ruiz, S., Birbaumer, N.: Real-Time Regulation and Detection of Brain States from fMRI Signals. In: Neurofeedback and Neuromodulation Techniques. Elsevier (2011)
Sitaram, R., Zhang, H., Guan, C., Thulasidas, M., Hoshi, Y., Ishikawa, A., Shimizu, K., Birbaumer, N.: Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface. NeuroImage 34(4), 1416–1427 (2007)
Sawan, M., Salam, M.T., Le Lan, J., Kassab, A., Gelinas, S., Vannasing, P., Lesage, F., Lassonde, M., Nguyen, D.K.: Wireless Recording Systems: From Noninvasive EEG-NIRS to Invasive EEG Devices. IEEE Trans. Biomed. Circuits Syst. 7(2), 186–195 (2013)
Choi, J.-K., Choi, M.-G., Kim, J.-M., Bae, H.-M.: Efficient Data Extraction Method for Near-Infrared Spectroscopy (NIRS) Systems With High Spatial and Temporal Resolution. IEEE Trans. Biomed. Circuits Syst. 7(2), 169 (2013)
Grafton, S.T., Arbib, M.A., Fatiga, L., Rizzolatti, G.: Location of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp. Brain Res. 112(1), 103–111 (1996)
Fang, X., Brasse, D., Hu-Guo, C., Hu, Y.: Design and Integration of a High Accuracy Multichannel Analog CMOS Peak Detect and Hold Circuit for APD-Based PET Imaging. IEEE Trans. Biomed. Circuits Syst. 6(2), 179 (2012)
Hinterberger, T., Schmidt, S., Neumann, N., Mellinger, J., Blankertz, B., Curio, G., Birbaumer, N.: Brain-computer communication and slow cortical potentials. IEEE Trans. Biomed. Eng. 51(6), 1011–1018 (2004)
Pfurtscheller, G.: Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalography and Clinical Neurophysiology 83(1), 62–69 (1992)
Li, Y., Gao, X., Liu, H., Gao, S.: Classification of single-trial electroencephalogram during finger movement. IEEE Trans. Biomed. Eng. 51(6), 1019–1025 (2004)
Townsend, G., Graimann, B., Pfurtscheller, G.: Continuous EEG classification during motor imagery-simulation of an asynchronous BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 12(2), 258–265 (2004)
Pfurtscheller, G., Brunner, C., Schlögl, A., Lopes da Silva, F.H.: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31(1), 153–159 (2006)
Nijboer, F., Sellers, E.W., Mellinger, J., Jordan, M.A., Matuz, T., Furdea, A., Halder, S., et al.: A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clinical Neurophysiology 119(8), 1909–1916 (2008)
Khan, O.I., Kim, S.H., Rasheed, T., Khan, A., Kim, T.S.: Extraction of P300 Using Constrained Independent Component Analysis. In: Annual International Conference of the IEEE EMBC 2009, September 3-6, pp. 4031–4034 (2009)
Zhang, J.-C., Xu, Y.-Q., Yao, L.: P300 Detection Using Boosting Neural Networks with Application to BCI. In: 2007 IEEE/ICME, May 23-27, pp. 1526–1530 (2007)
Salvaris, M., Cinel, C., Citi, L., Poli, R.: Novel protocols for P300-based brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 8–17 (2012)
Carabalona, R., Grossi, F., Tessadri, A., Castiglioni, P., Caracciolo, A., De Munari, I.: Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home. Ergonomics 55(5), 552–563 (2012)
Ortner, R., Allison, B.Z., Korisek, G., Gaggl, H., Pfurtscheller, G.: An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 19(1), 1–5 (2011)
Cecotti, H.: A Self-Paced and Calibration-Less SSVEP-Based Brain–Computer Interface Speller. IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 127–133 (2010)
Bakardjian, H., Tanaka, T., Cichocki, A.: Optimization of SSVEP brain responses with application to eight-command Brain–Computer Interface. Neuroscience Letters 469(1), 34–38 (2010)
Diez, P.F., Mut, V.A., Perona, E.M.A., Leber, E.L.: Asynchronous BCI control using high-frequency SSVEP. J. Neuroeng. Rehabil. 8(39) (2011)
Cecotti, H.: A Self-Paced and Calibration-Less SSVEP-Based Brain–Computer Interface Speller. IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 127–133 (2010)
Webster, J.G.: Medical Instrumentation Application and Design. Wiley (2009)
Volosyak, I.: SSVEP-based Bremen-BCI interface - boosting information transfer rates. J. Neural Eng. 8(3) (June 2011)
Garcia-Molina, G., Zhu, D.: Optimal spatial filtering for the steady state visual evoked potential: BCI application. In: 5th International IEEE/EMBS Conf. on Neur. Eng., pp. 156–160 (2011)
Lin, Z., Zhang, C., Wu, W., Gao, X.: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans. Biomed. Eng. 54, 1172–1176 (2007)
Leeb, R., Sagha, H., Chavarriaga, R., del R. Millán, J.: A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities. J. Neural Eng. 8(2) (April 2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Mora, N., Bianchi, V., De Munari, I., Ciampolini, P. (2014). A BCI Platform Supporting AAL Applications. In: Stephanidis, C., Antona, M. (eds) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014. Lecture Notes in Computer Science, vol 8513. Springer, Cham. https://doi.org/10.1007/978-3-319-07437-5_49
Download citation
DOI: https://doi.org/10.1007/978-3-319-07437-5_49
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07436-8
Online ISBN: 978-3-319-07437-5
eBook Packages: Computer ScienceComputer Science (R0)