Cognitive Brain Signal Processing: Healthy vs Alzheimer’s Disease Patients

  • Vasiliki Kosmidou
  • Anthoula Tsolaki
  • Chrysa Papadaniil
  • Magdalini Tsolaki
  • Leontios Hadjileontiadis
  • Ioannis Kompatsiaris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8513)

Abstract

Processing the brain functionality during certain perceptual stimuli or activities is beneficial to better understanding the lost abilities of a mind of a patient with cognitive impairment. Electroencephalogram (EEG) has been widely used as a tool for brain mapping. In this paper, we discuss the experimental setup and methods of the Cognitive Brain signal Processing (CBP) project towards this direction. High spatial resolution EEG (256 channels) is acquired, while the subject perform a series of cognitive tests with known expected response. Four tests from the CANTAB© Battery evaluating visual memory, spatial working memory and attention, a Sudoku puzzle and tasks with external visual and audio stimuli i.e., emotional (Ekman images) and audio event-related potentials (ERP) comprise the experimental protocol. Three groups of subjects are recruited, i.e., 30 healthy young adults 25-40 years old, 30 healthy adults of 65 years and older, and 30 patients with mild Alzheimers disease (AD) aged 65 years and older. In the CBP project, the 2D vector field tomography (VFT) will be extended to the 3D space to create a novel tool to solve the inverse EEG problem towards source reconstruction and therefore brain mapping. The 3D VFT will be applied to the acquired data in order to facilitate the extraction of the cognitive states and the identification of dysfunctioning areas. The external stimuli will be correlated with the performance of the participants to verify which elements can be assistive and improve their performance. The results can be used to design intelligent assistive environments and help the communication of patients with AD in everyday life.

Keywords

brain mapping Alzheimer’s disease EEG 3D-vector field tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moretti, D.V., Frisoni, G.B., Fracassi, C., Pievani, M., Geroldi, C., Binetti, G., Rossini, P.M., Zanetti, O.: MCI patients’ EEGs show group differences between those who progress and those who do not progress to AD. Neurobiology of Aging 32, 563–571 (2011)CrossRefGoogle Scholar
  2. 2.
    Baillet, S., Mosher, J., Leahy, R.: Electromagnetic Brain Mapping. IEEE Sign Process. Mag. 18, 14–30 (2001)CrossRefGoogle Scholar
  3. 3.
    Lotte, F., Lecuyer, A., Arnaldi, B.: FuRIA: an inverse solution based feature extraction algorithm using fuzzy set theory for brain-computer interfaces. IEEE Trans. Signal Process. 57, 3253–3263 (2009)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Grosse-Wentrup, M., Liefhold, C., Gramann, K., Buss, M.: Beamforming in noninvasive brain-computer interfaces. IEEE Trans. Biomed. Eng. 56, 1209–1219 (2009)CrossRefGoogle Scholar
  5. 5.
    Pascual-Marqui, R., Michel, C., Lehman, D.: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18, 49–65 (1994)CrossRefGoogle Scholar
  6. 6.
    Grave de Peralta Menendez, R., Murray, M.M., Michel, C.M., Martuzzi, R., Gonzalez Andino, S.L.: Electrical neuroimaging based on biophysical constraints. Neuroimage 21, 527–539 (2004)CrossRefGoogle Scholar
  7. 7.
    Pascual-Marqui, R.: Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Meth. & Find. Exper. & Clin. Pharm. 24D, 5–12 (2002)Google Scholar
  8. 8.
    Michel, C.M., Murray, M.M., Lantz, G., Gonzalez, S., Spinelli, L., Grave de Peralta, R.: EEG source imaging. Clinical Neuropsysiology 115, 2195–2222 (2004)CrossRefGoogle Scholar
  9. 9.
    Wagner, M., Fuchs, M., Kastner, J.: Evaluation of sLORETA in the Presence of Noise and Multiple Sources. Brain Topography 16, 277–280 (2004)CrossRefGoogle Scholar
  10. 10.
    Petrou, M., Giannakidis, A.: Full Tomographic Reconstruction of 2-D Vector Fields using Discrete Integral Data. The Computer J. 54, 1491–1504 (2011)CrossRefGoogle Scholar
  11. 11.
    Giannakidis, A., Petrou, M.: Sampling bounds for 2D vector field tomography. J. of Math. Imag. and Vis. 37, 151–165 (2010)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Koulouri, A., Petrou, M.: Vector Field Tomography: Reconstruction of an Irrotational Field in the Discrete Domain. In: Proc. SPPR (2012)Google Scholar
  13. 13.
    Norton, S.J., Linzer, M.: Correcting for ray refraction in velocity and attenuation tomography: a perturbation approach. Ultrasonic Imag. 4, 201–233 (1982)CrossRefGoogle Scholar
  14. 14.
    Braun, H., Hauck, A.: Tomographic Reconstruction of Vector Fields. IEEE Trans. on Sign. Proces. 39, 464–471 (1991)CrossRefMATHGoogle Scholar
  15. 15.
    Papadaniil, C.D., Hadjileontiadis, L.: Towards an Overall 3-D Vector Field Reconstruction via Discretization and a Linear Equations System. In: 13th IEEE Int. Conf. on BioInf. & BioEng. (2013)Google Scholar
  16. 16.
    Fountoulakis, K., Tsolaki, M., Chantzi, H., Kazis, A.: Mini mental state examination (MMSE): a validation study in Greece. JAD 15, 342–345 (2000)Google Scholar
  17. 17.
    Kounti, F., Tsolaki, M., Eleftheriou, M., Agogiatou, C., Karagiozi, K., Bakoglidou, E., Nikolaides, E., Nakou, S., Poptsi, E., Zafiropoulou, M., Papaliagkas, V., Kiosseoglou, G., Na, Z.: Administration of Montreal Cognitive Assesment (MoCA) test in Greek healthy elderly, patients with Mild Cognitive Impairment and patients with Dementia. In: Eur. Conf. on Psychol. Asses. & 2nd Int. Conf. of the Psychol Soc. of North Greece, vol. 129 (2007)Google Scholar
  18. 18.
    Armitage, S.G.: An Analysis of Certain Psychological Tests Used for the Evaluation of Brain Injury. APA J. 60, 1–48 (1946)Google Scholar
  19. 19.
    Beck, A.T., Ward, C.H., Mendelson, M., Mock, J., Erbaugh, J.: An inventory for measuring depression. Archives of General Psychiatry 4, 561–571 (1961)CrossRefGoogle Scholar
  20. 20.
    Fountoulakis, K.N., Tsolaki, M., Iacovides, A., Yesavage, J., O’Hara, R., Kazis, A., Ierodiakonou, C.: The validation of the short form of the Geriatric Depression Scale (GDS) in Greece. Aging 11, 367–372 (1999)Google Scholar
  21. 21.
    Lawton, M.P., Brody, E.M.: Assessment of older people: self-maintaining and instrumental activities of daily living. The Ger. 9, 179–186 (1969)Google Scholar
  22. 22.
    Hutton, J.T., Dippel, R.L., Loewenson, R.B.: Functional Rating Scale for the symptoms of dementia. In: Gallo, J.J., Reichel, W., Andersen, L. (eds.) Handbook of Ger. Asses., pp. 77–80. Aspen Publishers, Rockville (1988)Google Scholar
  23. 23.
    American Psychiatric Association: The Diagnostic and Statistical Manual of Mental Disorders, 5th edn., Arlington (2013)Google Scholar
  24. 24.
    Ekman, P.: Are there basic emotions? Psychol Rev. 99, 550–553 (1992)CrossRefGoogle Scholar
  25. 25.
    Ekman, P.: Strong evidence for universals in facial expressions: a reply to Russell’s mistaken critique. Psychol. Bulletin 115, 268–287 (1994)CrossRefGoogle Scholar
  26. 26.
    Fusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Allen, P., Surguladze, S., Benedetti, F., Abbamonte, M., Gasparotti, R., Barale, F., Perez, J., McGuire, P., Politi, P.: Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J. Psychiatry Neurosci. 34, 418–432 (2009)Google Scholar
  27. 27.
    Ferree, T.C., Luu, P., Russell, G.S., Tucker, D.M.: Scalp electrode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 112, 536–544 (2001)CrossRefGoogle Scholar
  28. 28.
    Lefebvre, C., Vachon, F., Grimault, S., Thibault, J., Guimond, S., Peretz, I., Jolicœur, P.: Distinct electrophysiological indices of maintenance in auditory and visual short-term memory. Neuropsychol. 51, 2939–2952 (2013)CrossRefGoogle Scholar
  29. 29.
    Nenert, R., Viswanathan, S., Dubuc, D.M., Visscher, K.M.: Modulations of ongoing alpha oscillations predict successful short-term visual memory encoding. Front. in Hum. Neurosci. 6, 127 (2012)CrossRefGoogle Scholar
  30. 30.
    Smyrnis, N., Protopapa, F., Tsoukas, E., Balogh, A., Siettos, C.I., Evdokimidis, I.: Amplitude spectrum EEG signal evidence for the dissociation of motor and perceptual spatial working memory in the human brain. Exp. Brain Res. 232, 659–673 (2013)CrossRefGoogle Scholar
  31. 31.
    Störmer, V.S., Li, S.-C., Heekeren, H.R., Lindenberger, U.: Normative shifts of cortical mechanisms of encoding contribute to adult age differences in visualspatial working memory. NeuroImage 73, 167–175 (2013)CrossRefGoogle Scholar
  32. 32.
    Chang, Y.-C., Huang, S.-L.: The influence of attention levels on psychophysiological responses. Int. J. of Psychoph. 86, 39–47 (2012)CrossRefGoogle Scholar
  33. 33.
    Ke, Y., Chen, L., Fu, L., Jia, Y., Li, P., Zhao, X., Ming, D.: Visual attention recognition based on nonlinear dynamical parameters of EEG. Biom. Mat. and Eng. 24, 349–355 (2014)Google Scholar
  34. 34.
    Ghorbanian, P., Devilbiss, D.M., Simon, A.J., Bernstein, A., Hess, T., Ashrafiuon, H.: Discrete wavelet transform EEG features of Alzheimer’s disease in activated states. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 2937–2940 (2012)Google Scholar
  35. 35.
    Lang, P.J., Bradley, M.M., Cuthbert, B.: International affective picture system (IAPS): instruction manual and affective ratings. Tech. Rep. A-7 (Gainesville, FL: University of Florida) (2008)Google Scholar
  36. 36.
    Kujawa, A., Klein, D.N., Hajcak, G.: Electrocortical reactivity to emotional images and faces in middle childhood to early adolescence. Dev. Cogn. Neurosci. 2, 458–467 (2012)CrossRefGoogle Scholar
  37. 37.
    Bradley, M.M., Lang, P.J.: The International Affective Digitized Sounds (2nd Edn. IADS-2): Affective ratings of sounds and instruction manual. Tech. Rep. B-3 (Gainesville, FL: University of Florida) (2007)Google Scholar
  38. 38.
    Strapparava, C., Valitutti, A.: WordNet-affect: an affective extension of WordNet. In: Proc. of the 4th Int. Conf. on Lang. Res. and Evaluation, Lisbon (2004)Google Scholar
  39. 39.
    Leclerc, C.M., Kensinger, E.A.: Neural processing of emotional pictures and words: a comparison of young and older adults. Dev. Neuropsych. 36, 519–538 (2011)CrossRefGoogle Scholar
  40. 40.
    Mickley Steinmetz, K.R., Addis, D.R., Kensinger, E.A.: The effect of arousal on the emotional memory network depends on valence. NeuroIm. 53, 318–324 (2010)CrossRefGoogle Scholar
  41. 41.
    Landré, L., Sava, A.-A., Krainik, A., Lamalle, L., Krolak-Salmon, P., Chainay, H.: Effects of Emotionally-Rated Material on Visual Memory in Alzheimer’s Disease in Relation to Medial Temporal Atrophy. JAD 36, 535–544 (2013)Google Scholar
  42. 42.
    Schultz, R.R., de Castro, C.C., Bertolucci, P.H.F.: Memory with emotional content, brain amygdala and Alzheimer’s disease. Acta Neurologica Scandinavica 120, 101–110 (2009)CrossRefGoogle Scholar
  43. 43.
    Ally, B.A.: Using pictures and words to understand recognition memory deterioration in amnestic mild cognitive impairment and Alzheimer’s disease: a review. Curr. Neurol. Neurosci. Rep. 12, 687–694 (2012)CrossRefGoogle Scholar
  44. 44.
    Gerdes, A.B.M., Wieser, M.J., Bublatzky, F., Kusay, A., Plichta, M.M., Alpers, G.W.: Emotional sounds modulate early neural processing of emotional pictures. Front. in Psychol. 4, 741 (2013)CrossRefGoogle Scholar
  45. 45.
    Perrin, M., Henaff, M.-A., Padovan, C., Faillenot, I., Merville, A., Krolak-Salmon, P.: Influence of emotional content and context on memory in mild Alzheimer’s disease. JAD 29, 817–826 (2012)Google Scholar
  46. 46.
    Britton, J., Taylor, S., Sudheimer, K., Liberzon, I.: Facial expressions and complex IAPS pictures: common and differential networks. Neuroimage 31, 906–919 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vasiliki Kosmidou
    • 1
  • Anthoula Tsolaki
    • 2
  • Chrysa Papadaniil
    • 3
  • Magdalini Tsolaki
    • 4
  • Leontios Hadjileontiadis
    • 3
  • Ioannis Kompatsiaris
    • 1
  1. 1.Centre for Research & Technology HellasInformation Technologies Institute (ITI)Greece
  2. 2.Medical Physics Laboratory, Medical SchoolAristotle University of ThessalonikiGreece
  3. 3.Department of Electrical & Computer EngineeringAristotle University of ThessalonikiGreece
  4. 4.3rd Department of NeurologyAristotle University of ThessalonikiGreece

Personalised recommendations