Skip to main content

Information Measures

  • Chapter
  • First Online:
Robust Recognition via Information Theoretic Learning

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

Information theoretic learning (ITL) was initiated in the late 1990s at CNEL [126]. It uses descriptors from information theory (entropy and divergences) estimated directly from the data to substitute the conventional statistical descriptors of variance and covariance. It can be used in the adaptation of linear or nonlinear filters and also in unsupervised and supervised machine learning applications. In this chapter, we introduce two commonly used differential entropies for data understanding and information theoretic measures (ITMs) for evaluations in abstaining classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code: http://www.openpr.org.cn/index.php/Download/.

  2. 2.

    http://yann.lecun.com/exdb/mnist/.

References

  1. Ahna, J., Oha, J., Choib, S.: Learning principal directions: Integrated-squared-error minimization. Neurocomputing 70, 1372–1381 (2007)

    Article  Google Scholar 

  2. Belhumeur, P.N., Hespanha, J., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Google Scholar 

  3. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research pp. 2399–2434 (2006)

    Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press (2004)

    Google Scholar 

  5. Cai, D., He, X., Han, J.: Spectral regression for efficient regularized subspace learning. In: International Conference on Computer Vision, pp. 1–7 (2007)

    Google Scholar 

  6. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters 14(10), 707–710 (2007)

    Article  Google Scholar 

  7. Combettes, P.L., Pesquet, J.C.: Proximal thresholding algorithm for minimization over orthonormal bases. SIAM Journal on Optimization 18(4), 1531–1376 (2007)

    MathSciNet  Google Scholar 

  8. Cover, T.M., Thomas, J.A.: Elements of information theory, 2nd edition. NewYork: John Wiley (2005)

    Book  Google Scholar 

  9. Donoho, D.L.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feng, Y., Huang, X., Shi, L., Yang, Y., Suykens, J.A.K.: Learning with the maximum correntropy criterion induced losses for regression. Tech. rep., K.U.Leuven (Leuven, Belgium) (2013)

    Google Scholar 

  11. Fornasier, M.: Theoretical foundations and numerical methods for sparse recovery. Radon Series on Computational and Applied Mathematics 9, 1–121 (2010)

    Google Scholar 

  12. Guyon, I., Elissee, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  13. He, R., Ao, M., Xiang, S., Li, S.: nearest feature line: a tangent approximation. In: Chinese Conference on Pattern Recognition (2008)

    Google Scholar 

  14. He, R., Hu, B.G., Yuan, X., Zheng, W.S.: Principal component analysis based on nonparametric maximum entropy. Neurocomputing 73, 1840–1952 (2010)

    Article  Google Scholar 

  15. He, R., Hu, B.G., Zheng, W.S., Guo, Y.Q.: Two-stage sparse representation for robust recognition on large-scale database. In: AAAI Conference on Artificial Intelligence, pp. 475–480 (2010)

    Google Scholar 

  16. Hellier, P., Barillot, C., Memin, E., Perez, P.: An energy-based framework for dense 3D registration of volumetric brain images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2000)

    Google Scholar 

  17. Hou, L., He, R.: Minimum entropy linear embedding based on gaussian mixture model. In: Asian Conference on Pattern Recognition, pp. 362–366 (2011)

    Google Scholar 

  18. Hu, B.G., He, R., Yuan, X.: Information-theoretic measures for objective evaluation of classifications. Acta Automatica Sinica 38(7), 1169–1182 (2012)

    Article  MathSciNet  Google Scholar 

  19. Hu, B.G., Wang, Y.: Evaluation criteria based on mutual information for classifications including rejected class. Acta Automatica Sinica 34, 1396–1403 (2008)

    Article  MathSciNet  Google Scholar 

  20. Huber, P.: Robust statistics. Wiley (1981)

    Google Scholar 

  21. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)

    Article  Google Scholar 

  22. Hyvärinen, A.: Survey on independent component analysis. Neural Computing Surveys 2, 94–128 (1999)

    Google Scholar 

  23. Idier, J.: Convex half-quadratic criteria and interacting auxiliary variables for image restoration. IEEE Transactions on Image Processing 10(7), 1001–1009 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jeonga, K.H., Liu, W.F., Han, S., Hasanbelliu, E., Principe, J.C.: The correntropy mace filter. Pattern Recognition 42(5), 871–885 (2009)

    Article  Google Scholar 

  25. Laaksonen, J.: Local subspace classifier. In: International Conference on Artificial Neural Networks (1997)

    Google Scholar 

  26. Li, S.Z.: Face recognition based on nearest linear combinations. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 839–844 (1998)

    Google Scholar 

  27. Luenberger, D.: Optimization by vector space methods. Wiley (1969)

    Google Scholar 

  28. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Transactions on Image Processing 17(1), 53–69 (2008)

    Article  MathSciNet  Google Scholar 

  29. Mazeta, V., Carteretb, C., Briea, D., Idierc, J., Humbert, B.: Background removal from spectra by designing and minimising a non-quadratic cost function. Chemometrics and Intelligent Laboratory Systems 76(2), 121–133 (2005)

    Article  Google Scholar 

  30. Nishii, R., Tanaka, S.: Accuracy and inaccuracy assessments in land-cover classification. IEEE Transactions Geoscience and Remote Sensing 37, 491–498 (1999)

    Article  Google Scholar 

  31. Niu, G., Jitkrittum, W., Dai, B., Hachiya, H., Sugiyama, M.: Squared-loss mutual information regularization: A novel information-theoretic approach to semi-supervised learning. In: International Conference on Machine Learning (2013)

    Google Scholar 

  32. Pearson, K.: On lines and planes of closest fit to systems of points in space. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Sixth Series 2, 559–572 (1901)

    Article  Google Scholar 

  33. Plumbley, M.: Recovery of sparse representations by polytope faces pursuit. In: Proceedings of International Conference on Independent Component Analysis and Blind Source Separation, pp. 206–213 (2006)

    Google Scholar 

  34. Principe, J.C., Xu, D., Fisher, J.W.: Information-theoretic learning. In: S. Haykin, editor, Unsupervised Adaptive Filtering, Volume 1: Blind-Source Separation. Wiley (2000)

    Google Scholar 

  35. Rao, S., Liu, W., Principe, J.C., de Medeiros Martins, A.: Information theoretic mean shift algorithm. In: Machine Learning for Signal Processing (2006)

    Google Scholar 

  36. Renyi, A.: On measures of entropy and information. Selected Papers of Alfred Renyi 2, 565–580 (1976)

    Google Scholar 

  37. Roullot, E., Herment, A., Bloch, I., de Cesare, A., Nikolova, M., Mousseaux, E.: Modeling anisotropic undersampling of magnetic resonance angiographies and reconstruction of a high-resolution isotropic volume using half-quadratic regularization techniques. Signal Processing 84(4), 743–762 (2004)

    Google Scholar 

  38. Rousseeuw, P.J.: Least median of squares regression. Journal of the American Statistical Association 79(388), 871–880 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  39. Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27, 623–653 (1948)

    Article  MathSciNet  Google Scholar 

  40. Shi, Y., Sha, F.: Information-theoretical learning of discriminative clusters for unsupervised domain adaptation. In: International Conference on Machine Learning (2012)

    Google Scholar 

  41. Siegel, A.F.: Robust regression using repeated medians. Biometrika 69(1), 242–244 (1982)

    Article  MATH  Google Scholar 

  42. Vincent, P., Bengio, Y.: K-local hyperplane and convex distance nearest neighbor algorithms. In: Advances in Neural Information Processing Systems, vol. 14, pp. 985–992 (2001)

    Google Scholar 

  43. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. Journal of Machine Learning Research 11, 2837–2854 (2010)

    MATH  MathSciNet  Google Scholar 

  44. Yang, S., Zha, H., Zhou, S., Hu, B.G.: Variational graph embedding for globally and locally consistent feature extraction. In: Europe Conference on Machine Learning (ECML), pp. 538–553 (2009)

    Google Scholar 

  45. Zhang, T.: Multi-stage convex relaxation for learning with sparse regularization. In: Proceedings of Neural Information Processing Systems, pp. 16–21 (2008)

    Google Scholar 

  46. Zhang, Z.: Parameter estimation techniques: A tutorial with application to conic fitting. Image and Vision Computing 15(1), 59–76 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

He, R., Hu, B., Yuan, X., Wang, L. (2014). Information Measures. In: Robust Recognition via Information Theoretic Learning. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-07416-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07416-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07415-3

  • Online ISBN: 978-3-319-07416-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics